The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Approximate Procedures

Ordinary Poisson Binomial Distribution

Poisson Approximation

The Poisson Approximation (DC) approach is requested with method = "Poisson". It is based on a Poisson distribution, whose parameter is the sum of the probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Poisson")
#>  [1] 2.263593e-16 8.154460e-15 1.468798e-13 1.763753e-12 1.588454e-11
#>  [6] 1.144462e-10 6.871428e-10 3.536273e-09 1.592402e-08 6.373926e-08
#> [11] 2.296169e-07 7.519830e-07 2.257479e-06 6.255718e-06 1.609704e-05
#> [16] 3.865908e-05 8.704191e-05 1.844490e-04 3.691482e-04 6.999128e-04
#> [21] 1.260697e-03 2.162661e-03 3.541299e-03 5.546660e-03 8.325631e-03
#> [26] 1.199704e-02 1.662255e-02 2.217842e-02 2.853445e-02 3.544609e-02
#> [31] 4.256414e-02 4.946284e-02 5.568342e-02 6.078674e-02 6.440607e-02
#> [36] 6.629115e-02 6.633610e-02 6.458699e-02 6.122916e-02 5.655755e-02
#> [41] 5.093630e-02 4.475488e-02 3.838734e-02 3.216003e-02 2.633059e-02
#> [46] 2.107875e-02 1.650760e-02 1.265269e-02 9.495953e-03 6.981348e-03
#> [51] 5.029979e-03 3.552981e-03 2.461424e-03 1.673044e-03 1.116119e-03
#> [56] 7.310458e-04 4.702766e-04 2.972182e-04 1.846053e-04 1.127169e-04
#> [61] 6.767601e-05 9.288901e-05
ppbinom(NULL, pp, wt, "Poisson")
#>  [1] 2.263593e-16 8.380820e-15 1.552606e-13 1.919013e-12 1.780355e-11
#>  [6] 1.322498e-10 8.193925e-10 4.355666e-09 2.027968e-08 8.401894e-08
#> [11] 3.136359e-07 1.065619e-06 3.323097e-06 9.578815e-06 2.567585e-05
#> [16] 6.433494e-05 1.513768e-04 3.358259e-04 7.049740e-04 1.404887e-03
#> [21] 2.665584e-03 4.828245e-03 8.369543e-03 1.391620e-02 2.224184e-02
#> [26] 3.423887e-02 5.086142e-02 7.303984e-02 1.015743e-01 1.370204e-01
#> [31] 1.795845e-01 2.290474e-01 2.847308e-01 3.455175e-01 4.099236e-01
#> [36] 4.762147e-01 5.425508e-01 6.071378e-01 6.683670e-01 7.249245e-01
#> [41] 7.758608e-01 8.206157e-01 8.590031e-01 8.911631e-01 9.174937e-01
#> [46] 9.385724e-01 9.550800e-01 9.677327e-01 9.772287e-01 9.842100e-01
#> [51] 9.892400e-01 9.927930e-01 9.952544e-01 9.969275e-01 9.980436e-01
#> [56] 9.987746e-01 9.992449e-01 9.995421e-01 9.997267e-01 9.998394e-01
#> [61] 9.999071e-01 1.000000e+00

A comparison with exact computation shows that the approximation quality of the PA procedure increases with smaller probabilities of success. The reason is that the Poisson Binomial distribution approaches a Poisson distribution when the probabilities are very small.

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Poisson")
#>  [1] 0.0000150619 0.0001672374 0.0009284471 0.0034362888 0.0095385726
#>  [6] 0.0211820073 0.0391985129 0.0621763578 0.0862956727 0.1064633767
#> [11] 0.1182099310 0.1193204840 0.1104046811 0.0942969970 0.0747865595
#> [16] 0.0553587178 0.0384166744 0.0250913815 0.0154776776 0.0090449448
#> [21] 0.0101904160
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -9.555e-02  1.506e-05  9.437e-03  0.000e+00  2.407e-02  4.379e-02

# U(0, 0.01) random probabilities of success
pp <- runif(20, 0, 0.01)
dpbinom(NULL, pp, method = "Poisson")
#>  [1] 9.095763e-01 8.620639e-02 4.085167e-03 1.290592e-04 3.057942e-06
#>  [6] 5.796418e-08 9.156063e-10 1.239684e-11 1.468661e-13 1.546605e-15
#> [11] 1.465817e-17 1.262953e-19 9.974852e-22 7.272161e-24 4.923067e-26
#> [16] 3.110605e-28 1.842575e-30 1.027251e-32 5.408845e-35 2.698058e-37
#> [21] 1.284357e-39
dpbinom(NULL, pp)
#>  [1] 9.093051e-01 8.672423e-02 3.861917e-03 1.066765e-04 2.048094e-06
#>  [6] 2.902198e-08 3.145829e-10 2.667571e-12 1.794592e-14 9.656258e-17
#> [11] 4.170114e-19 1.444465e-21 3.994453e-24 8.738444e-27 1.490372e-29
#> [16] 1.938487e-32 1.859939e-35 1.249654e-38 5.381374e-42 1.245845e-45
#> [21] 9.511846e-50
summary(dpbinom(NULL, pp, method = "Poisson") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -5.178e-04  0.000e+00  0.000e+00  0.000e+00  6.000e-10  2.712e-04

Arithmetic Mean Binomial Approximation

The Arithmetic Mean Binomial Approximation (AMBA) approach is requested with method = "Mean". It is based on a Binomial distribution, whose parameter is the arithmetic mean of the probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
mean(rep(pp, wt))
#> [1] 0.5905641

dpbinom(NULL, pp, wt, "Mean")
#>  [1] 2.204668e-24 1.939788e-22 8.393759e-21 2.381049e-19 4.979863e-18
#>  [6] 8.188480e-17 1.102354e-15 1.249300e-14 1.216331e-13 1.033156e-12
#> [11] 7.749086e-12 5.182139e-11 3.114432e-10 1.693217e-09 8.373498e-09
#> [16] 3.784379e-08 1.569327e-07 5.991812e-07 2.112610e-06 6.896287e-06
#> [21] 2.088890e-05 5.882491e-05 1.542694e-04 3.773093e-04 8.616897e-04
#> [26] 1.839474e-03 3.673702e-03 6.868933e-03 1.203071e-02 1.974641e-02
#> [31] 3.038072e-02 4.382068e-02 5.925587e-02 7.510979e-02 8.921887e-02
#> [36] 9.927353e-02 1.034154e-01 1.007871e-01 9.181496e-02 7.810121e-02
#> [41] 6.195859e-02 4.577391e-02 3.143980e-02 2.003761e-02 1.182352e-02
#> [46] 6.442647e-03 3.232269e-03 1.487928e-03 6.259647e-04 2.395401e-04
#> [51] 8.292214e-05 2.579729e-05 7.155695e-06 1.752667e-06 3.745215e-07
#> [56] 6.875325e-08 1.062521e-08 1.344354e-09 1.337294e-10 9.807924e-12
#> [61] 4.715599e-13 1.115034e-14
ppbinom(NULL, pp, wt, "Mean")
#>  [1] 2.204668e-24 1.961834e-22 8.589942e-21 2.466948e-19 5.226557e-18
#>  [6] 8.711136e-17 1.189465e-15 1.368247e-14 1.353155e-13 1.168472e-12
#> [11] 8.917558e-12 6.073895e-11 3.721822e-10 2.065399e-09 1.043890e-08
#> [16] 4.828268e-08 2.052154e-07 8.043966e-07 2.917007e-06 9.813294e-06
#> [21] 3.070220e-05 8.952711e-05 2.437965e-04 6.211058e-04 1.482796e-03
#> [26] 3.322270e-03 6.995972e-03 1.386490e-02 2.589561e-02 4.564203e-02
#> [31] 7.602274e-02 1.198434e-01 1.790993e-01 2.542091e-01 3.434279e-01
#> [36] 4.427015e-01 5.461169e-01 6.469040e-01 7.387189e-01 8.168201e-01
#> [41] 8.787787e-01 9.245526e-01 9.559924e-01 9.760300e-01 9.878536e-01
#> [46] 9.942962e-01 9.975285e-01 9.990164e-01 9.996424e-01 9.998819e-01
#> [51] 9.999648e-01 9.999906e-01 9.999978e-01 9.999995e-01 9.999999e-01
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the AMBA procedure increases when the probabilities of success are closer to each other. The reason is that, although the expectation remains unchanged, the distribution’s variance becomes smaller the less the probabilities differ. Since this variance is minimized by equal probabilities (but still underestimated), the AMBA method is best suited for situations with very similar probabilities of success.

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "Mean")
#>  [1] 9.203176e-08 2.297178e-06 2.723611e-05 2.039497e-04 1.081780e-03
#>  [6] 4.320318e-03 1.347977e-02 3.364646e-02 6.823695e-02 1.135495e-01
#> [11] 1.558851e-01 1.768638e-01 1.655492e-01 1.271454e-01 7.934094e-02
#> [16] 3.960811e-02 1.544760e-02 4.536271e-03 9.435709e-04 1.239589e-04
#> [21] 7.735255e-06
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.801e-02  2.290e-06  6.360e-04  0.000e+00  8.837e-03  1.662e-02

# U(0.3, 0.5) random probabilities of success
pp <- runif(20, 0.3, 0.5)
dpbinom(NULL, pp, method = "Mean")
#>  [1] 4.348271e-05 5.672598e-04 3.515127e-03 1.375712e-02 3.813748e-02
#>  [6] 7.960444e-02 1.298114e-01 1.693472e-01 1.795010e-01 1.561137e-01
#> [11] 1.120132e-01 6.642197e-02 3.249439e-02 1.304339e-02 4.253984e-03
#> [16] 1.109919e-03 2.262438e-04 3.472347e-05 3.774915e-06 2.591904e-07
#> [21] 8.453263e-09
dpbinom(NULL, pp)
#>  [1] 4.015121e-05 5.344728e-04 3.370391e-03 1.338738e-02 3.756479e-02
#>  [6] 7.915145e-02 1.299445e-01 1.702071e-01 1.806555e-01 1.569062e-01
#> [11] 1.121277e-01 6.604356e-02 3.200604e-02 1.269255e-02 4.078679e-03
#> [16] 1.045709e-03 2.088926e-04 3.133484e-05 3.320483e-06 2.216332e-07
#> [21] 7.008006e-09
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -1.155e-03  1.400e-09  1.735e-05  0.000e+00  3.508e-04  5.727e-04

# U(0.39, 0.41) random probabilities of success
pp <- runif(20, 0.39, 0.41)
dpbinom(NULL, pp, method = "Mean")
#>  [1] 3.638616e-05 4.854405e-04 3.076305e-03 1.231262e-02 3.490673e-02
#>  [6] 7.451247e-02 1.242621e-01 1.657824e-01 1.797056e-01 1.598344e-01
#> [11] 1.172824e-01 7.112295e-02 3.558286e-02 1.460687e-02 4.871885e-03
#> [16] 1.299951e-03 2.709859e-04 4.253314e-05 4.728746e-06 3.320414e-07
#> [21] 1.107470e-08
dpbinom(NULL, pp)
#>  [1] 3.636149e-05 4.851935e-04 3.075192e-03 1.230970e-02 3.490204e-02
#>  [6] 7.450845e-02 1.242626e-01 1.657891e-01 1.797153e-01 1.598415e-01
#> [11] 1.172840e-01 7.112011e-02 3.557873e-02 1.460374e-02 4.870251e-03
#> [16] 1.299328e-03 2.708111e-04 4.249771e-05 4.723809e-06 3.316172e-07
#> [21] 1.105772e-08
summary(dpbinom(NULL, pp, method = "Mean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -9.641e-06  1.700e-11  1.747e-07  0.000e+00  2.844e-06  4.689e-06

Geometric Mean Binomial Approximation - Variant A

The Geometric Mean Binomial Approximation (Variant A) (GMBA-A) approach is requested with method = "GeoMean". It is based on a Binomial distribution, whose parameter is the geometric mean of the probabilities of success: \[\hat{p} = \sqrt[n]{p_1 \cdot ... \cdot p_n}\]

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
prod(rep(pp, wt))^(1/sum(wt))
#> [1] 0.4669916

dpbinom(NULL, pp, wt, "GeoMean")
#>  [1] 2.141782e-17 1.144670e-15 3.008684e-14 5.184208e-13 6.586057e-12
#>  [6] 6.578175e-11 5.379195e-10 3.703028e-09 2.189958e-08 1.129911e-07
#> [11] 5.147813e-07 2.091103e-06 7.633772e-06 2.520966e-05 7.572779e-05
#> [16] 2.078916e-04 5.236606e-04 1.214475e-03 2.601021e-03 5.157435e-03
#> [21] 9.489168e-03 1.623184e-02 2.585712e-02 3.841422e-02 5.328923e-02
#> [26] 6.909972e-02 8.382634e-02 9.520502e-02 1.012875e-01 1.009827e-01
#> [31] 9.437363e-02 8.268481e-02 6.791600e-02 5.229152e-02 3.772988e-02
#> [36] 2.550094e-02 1.613623e-02 9.552467e-03 5.285892e-03 2.731219e-03
#> [41] 1.316117e-03 5.906156e-04 2.464113e-04 9.539397e-05 3.419132e-05
#> [46] 1.131690e-05 3.448772e-06 9.643463e-07 2.464308e-07 5.728188e-08
#> [51] 1.204491e-08 2.276152e-09 3.835067e-10 5.705775e-11 7.406038e-12
#> [56] 8.258409e-13 7.752374e-14 5.958061e-15 3.600079e-16 1.603823e-17
#> [61] 4.683928e-19 6.727527e-21
ppbinom(NULL, pp, wt, "GeoMean")
#>  [1] 2.141782e-17 1.166088e-15 3.125293e-14 5.496737e-13 7.135731e-12
#>  [6] 7.291748e-11 6.108370e-10 4.313865e-09 2.621345e-08 1.392046e-07
#> [11] 6.539859e-07 2.745088e-06 1.037886e-05 3.558852e-05 1.113163e-04
#> [16] 3.192079e-04 8.428685e-04 2.057343e-03 4.658364e-03 9.815799e-03
#> [21] 1.930497e-02 3.553681e-02 6.139393e-02 9.980815e-02 1.530974e-01
#> [26] 2.221971e-01 3.060234e-01 4.012285e-01 5.025160e-01 6.034986e-01
#> [31] 6.978723e-01 7.805571e-01 8.484731e-01 9.007646e-01 9.384945e-01
#> [36] 9.639954e-01 9.801316e-01 9.896841e-01 9.949700e-01 9.977012e-01
#> [41] 9.990173e-01 9.996080e-01 9.998544e-01 9.999498e-01 9.999840e-01
#> [46] 9.999953e-01 9.999987e-01 9.999997e-01 9.999999e-01 1.000000e+00
#> [51] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

It is known that the geometric mean of the probabilities of success is always smaller than their arithmetic mean. Thus, we get a stochastically smaller binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-A procedure increases when the probabilities of success are closer to each other:

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMean")
#>  [1] 4.557123e-06 7.742984e-05 6.249130e-04 3.185359e-03 1.150098e-02
#>  [6] 3.126602e-02 6.640491e-02 1.128282e-01 1.557610e-01 1.764351e-01
#> [11] 1.648790e-01 1.273387e-01 8.113517e-02 4.241734e-02 1.801777e-02
#> [16] 6.122779e-03 1.625497e-03 3.249263e-04 4.600672e-05 4.114199e-06
#> [21] 1.747603e-07
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
#> -0.11151 -0.01493  0.00000  0.00000  0.01140  0.10279

# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMean")
#>  [1] 1.317886e-06 2.551200e-05 2.345875e-04 1.362363e-03 5.604265e-03
#>  [6] 1.735823e-02 4.200318e-02 8.131092e-02 1.278907e-01 1.650496e-01
#> [11] 1.757292e-01 1.546280e-01 1.122499e-01 6.686047e-02 3.235759e-02
#> [16] 1.252775e-02 3.789307e-03 8.629936e-04 1.392173e-04 1.418425e-05
#> [21] 6.864565e-07
dpbinom(NULL, pp)
#>  [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#>  [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0029201 -0.0004375  0.0000000  0.0000000  0.0005612  0.0030169

# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMean")
#>  [1] 9.491177e-07 1.899145e-05 1.805052e-04 1.083550e-03 4.607292e-03
#>  [6] 1.475040e-02 3.689366e-02 7.382266e-02 1.200193e-01 1.601024e-01
#> [11] 1.761970e-01 1.602558e-01 1.202494e-01 7.403508e-02 3.703527e-02
#> [16] 1.482120e-02 4.633845e-03 1.090839e-03 1.818935e-04 1.915586e-05
#> [21] 9.582517e-07
dpbinom(NULL, pp)
#>  [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#>  [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMean") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -2.485e-05 -4.219e-06  0.000e+00  0.000e+00  4.185e-06  2.482e-05

Geometric Mean Binomial Approximation - Variant B

The Geometric Mean Binomial Approximation (Variant B) (GMBA-B) approach is requested with method = "GeoMeanCounter". It is based on a Binomial distribution, whose parameter is 1 minus the geometric mean of the probabilities of failure: \[\hat{p} = 1 - \sqrt[n]{(1 - p_1) \cdot ... \cdot (1 - p_n)}\]

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
1 - prod(1 - rep(pp, wt))^(1/sum(wt))
#> [1] 0.7275426

dpbinom(NULL, pp, wt, "GeoMeanCounter")
#>  [1] 3.574462e-35 5.822379e-33 4.664248e-31 2.449471e-29 9.484189e-28
#>  [6] 2.887121e-26 7.195512e-25 1.509685e-23 2.721134e-22 4.279009e-21
#> [11] 5.941642e-20 7.356037e-19 8.184508e-18 8.237686e-17 7.541858e-16
#> [16] 6.310225e-15 4.844429e-14 3.424255e-13 2.235148e-12 1.350769e-11
#> [21] 7.574609e-11 3.948978e-10 1.917264e-09 8.681177e-09 3.670379e-08
#> [26] 1.450549e-07 5.363170e-07 1.856461e-06 6.019586e-06 1.829121e-05
#> [31] 5.209921e-05 1.391205e-04 3.482749e-04 8.172712e-04 1.797236e-03
#> [36] 3.702208e-03 7.139892e-03 1.288219e-02 2.172588e-02 3.421374e-02
#> [41] 5.024851e-02 6.872559e-02 8.738947e-02 1.031108e-01 1.126377e-01
#> [46] 1.136267e-01 1.055364e-01 8.994057e-02 7.004907e-02 4.962603e-02
#> [51] 3.180393e-02 1.831737e-02 9.406320e-03 4.265268e-03 1.687339e-03
#> [56] 5.734528e-04 1.640669e-04 3.843049e-05 7.077304e-06 9.609416e-07
#> [61] 8.553338e-08 3.744258e-09
ppbinom(NULL, pp, wt, "GeoMeanCounter")
#>  [1] 3.574462e-35 5.858123e-33 4.722829e-31 2.496699e-29 9.733859e-28
#>  [6] 2.984460e-26 7.493958e-25 1.584624e-23 2.879597e-22 4.566969e-21
#> [11] 6.398339e-20 7.995871e-19 8.984095e-18 9.136095e-17 8.455467e-16
#> [16] 7.155772e-15 5.560007e-14 3.980256e-13 2.633173e-12 1.614086e-11
#> [21] 9.188695e-11 4.867847e-10 2.404049e-09 1.108523e-08 4.778901e-08
#> [26] 1.928440e-07 7.291610e-07 2.585622e-06 8.605207e-06 2.689642e-05
#> [31] 7.899562e-05 2.181161e-04 5.663910e-04 1.383662e-03 3.180899e-03
#> [36] 6.883107e-03 1.402300e-02 2.690519e-02 4.863107e-02 8.284481e-02
#> [41] 1.330933e-01 2.018189e-01 2.892084e-01 3.923192e-01 5.049569e-01
#> [46] 6.185836e-01 7.241200e-01 8.140606e-01 8.841097e-01 9.337357e-01
#> [51] 9.655396e-01 9.838570e-01 9.932633e-01 9.975286e-01 9.992159e-01
#> [56] 9.997894e-01 9.999534e-01 9.999919e-01 9.999989e-01 9.999999e-01
#> [61] 1.000000e+00 1.000000e+00

It is known that the geometric mean of the probabilities of failure is always smaller than their arithmetic mean. As a result, 1 minus the geometric mean is larger than 1 minus the arithmetic mean. Thus, we get a stochastically larger binomial distribution. A comparison with exact computation shows that the approximation quality of the GMBA-B procedure again increases when the probabilities of success are closer to each other:

set.seed(1)

# U(0, 1) random probabilities of success
pp <- runif(20)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#>  [1] 4.401037e-11 2.019854e-09 4.403304e-08 6.062685e-07 5.912743e-06
#>  [6] 4.341843e-05 2.490859e-04 1.143179e-03 4.262876e-03 1.304297e-02
#> [11] 3.292337e-02 6.868258e-02 1.182069e-01 1.669263e-01 1.915269e-01
#> [16] 1.758024e-01 1.260695e-01 6.807004e-02 2.603394e-02 6.288561e-03
#> [21] 7.215333e-04
dpbinom(NULL, pp)
#>  [1] 4.401037e-11 7.873212e-09 3.624610e-07 7.952504e-06 1.014602e-04
#>  [6] 8.311558e-04 4.642470e-03 1.838525e-02 5.297347e-02 1.129135e-01
#> [11] 1.798080e-01 2.148719e-01 1.926468e-01 1.289706e-01 6.384266e-02
#> [16] 2.299142e-02 5.871700e-03 1.021142e-03 1.129421e-04 6.977021e-06
#> [21] 1.747603e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -1.469e-01 -1.724e-02 -3.200e-07  0.000e+00  2.592e-02  1.528e-01

# U(0.4, 0.6) random probabilities of success
pp <- runif(20, 0.4, 0.6)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#>  [1] 1.046635e-06 2.073844e-05 1.951870e-04 1.160254e-03 4.885321e-03
#>  [6] 1.548796e-02 3.836059e-02 7.600922e-02 1.223688e-01 1.616443e-01
#> [11] 1.761588e-01 1.586582e-01 1.178895e-01 7.187414e-02 3.560358e-02
#> [16] 1.410928e-02 4.368234e-03 1.018282e-03 1.681387e-04 1.753458e-05
#> [21] 8.685930e-07
dpbinom(NULL, pp)
#>  [1] 1.046635e-06 2.098187e-05 1.993006e-04 1.192678e-03 5.043114e-03
#>  [6] 1.601621e-02 3.964022e-02 7.829406e-02 1.253351e-01 1.642218e-01
#> [11] 1.770816e-01 1.574210e-01 1.151700e-01 6.896627e-02 3.347297e-02
#> [16] 1.296524e-02 3.913788e-03 8.873960e-04 1.421738e-04 1.435144e-05
#> [21] 6.864565e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0029663 -0.0005283  0.0000000  0.0000000  0.0004544  0.0029079

# U(0.49, 0.51) random probabilities of success
pp <- runif(20, 0.49, 0.51)
dpbinom(NULL, pp, method = "GeoMeanCounter")
#>  [1] 9.472606e-07 1.895800e-05 1.802225e-04 1.082065e-03 4.601880e-03
#>  [6] 1.473596e-02 3.686475e-02 7.377926e-02 1.199722e-01 1.600709e-01
#> [11] 1.761969e-01 1.602871e-01 1.202964e-01 7.407854e-02 3.706427e-02
#> [16] 1.483571e-02 4.639289e-03 1.092334e-03 1.821786e-04 1.918963e-05
#> [21] 9.601293e-07
dpbinom(NULL, pp)
#>  [1] 9.472606e-07 1.895984e-05 1.802539e-04 1.082315e-03 4.603107e-03
#>  [6] 1.474011e-02 3.687497e-02 7.379784e-02 1.199969e-01 1.600932e-01
#> [11] 1.762060e-01 1.602781e-01 1.202742e-01 7.405383e-02 3.704562e-02
#> [16] 1.482542e-02 4.635093e-03 1.091093e-03 1.819256e-04 1.915775e-05
#> [21] 9.582517e-07
summary(dpbinom(NULL, pp, method = "GeoMeanCounter") - dpbinom(NULL, pp))
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -2.467e-05 -4.159e-06  0.000e+00  0.000e+00  4.196e-06  2.470e-05

Normal Approximation

The Normal Approximation (NA) approach is requested with method = "Normal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "Normal")
#>  [1] 2.552770e-32 1.207834e-30 5.219650e-29 2.022022e-27 7.021785e-26
#>  [6] 2.185917e-24 6.100302e-23 1.526188e-21 3.423032e-20 6.882841e-19
#> [11] 1.240755e-17 2.005270e-16 2.905604e-15 3.774712e-14 4.396661e-13
#> [16] 4.591569e-12 4.299381e-11 3.609645e-10 2.717342e-09 1.834224e-08
#> [21] 1.110185e-07 6.025326e-07 2.932337e-06 1.279682e-05 5.007841e-05
#> [26] 1.757379e-04 5.530339e-04 1.560683e-03 3.949650e-03 8.963710e-03
#> [31] 1.824341e-02 3.329786e-02 5.450317e-02 8.000636e-02 1.053238e-01
#> [36] 1.243451e-01 1.316535e-01 1.250080e-01 1.064497e-01 8.129267e-02
#> [41] 5.567468e-02 3.419491e-02 1.883477e-02 9.303614e-03 4.121280e-03
#> [46] 1.637186e-03 5.832371e-04 1.863241e-04 5.337829e-05 1.371282e-05
#> [51] 3.159002e-06 6.525712e-07 1.208800e-07 2.007813e-08 2.990389e-09
#> [56] 3.993563e-10 4.782059e-11 5.134327e-12 4.942641e-13 4.266130e-14
#> [61] 3.301422e-15 2.441468e-16
ppbinom(NULL, pp, wt, "Normal")
#>  [1] 2.552770e-32 1.233362e-30 5.342987e-29 2.075452e-27 7.229330e-26
#>  [6] 2.258210e-24 6.326123e-23 1.589449e-21 3.581977e-20 7.241039e-19
#> [11] 1.313165e-17 2.136587e-16 3.119262e-15 4.086639e-14 4.805325e-13
#> [16] 5.072102e-12 4.806591e-11 4.090305e-10 3.126373e-09 2.146861e-08
#> [21] 1.324871e-07 7.350197e-07 3.667357e-06 1.646417e-05 6.654258e-05
#> [26] 2.422805e-04 7.953144e-04 2.355997e-03 6.305647e-03 1.526936e-02
#> [31] 3.351276e-02 6.681062e-02 1.213138e-01 2.013201e-01 3.066439e-01
#> [36] 4.309891e-01 5.626426e-01 6.876506e-01 7.941003e-01 8.753930e-01
#> [41] 9.310676e-01 9.652625e-01 9.840973e-01 9.934009e-01 9.975222e-01
#> [46] 9.991594e-01 9.997426e-01 9.999290e-01 9.999823e-01 9.999960e-01
#> [51] 9.999992e-01 9.999999e-01 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:

set.seed(1)

# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0053305 -0.0010422  0.0005271  0.0000000  0.0016579  0.0026553

# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -8.412e-06  0.000e+00  0.000e+00  0.000e+00  0.000e+00  3.815e-06

# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "Normal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -4.484e-09  0.000e+00  8.990e-13  0.000e+00  4.919e-10  2.734e-09

Refined Normal Approximation

The Refined Normal Approximation (RNA) approach is requested with method = "RefinedNormal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.

set.seed(1)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)

dpbinom(NULL, pp, wt, "RefinedNormal")
#>  [1] 2.579548e-31 1.128297e-29 4.507210e-28 1.611452e-26 5.156486e-25
#>  [6] 1.476806e-23 3.785627e-22 8.685911e-21 1.783953e-19 3.280039e-18
#> [11] 5.399492e-17 7.959230e-16 1.050796e-14 1.242802e-13 1.317210e-12
#> [16] 1.251531e-11 1.066498e-10 8.155390e-10 5.599786e-09 3.455053e-08
#> [21] 1.917106e-07 9.574753e-07 4.308224e-06 1.748069e-05 6.401569e-05
#> [26] 2.117447e-04 6.329842e-04 1.710740e-03 4.180480e-03 9.234968e-03
#> [31] 1.843341e-02 3.322175e-02 5.401115e-02 7.912655e-02 1.043358e-01
#> [36] 1.236782e-01 1.316360e-01 1.256489e-01 1.074322e-01 8.218619e-02
#> [41] 5.618825e-02 3.428872e-02 1.865323e-02 9.032795e-03 3.886960e-03
#> [46] 1.483178e-03 5.004545e-04 1.487517e-04 3.873113e-05 8.757189e-06
#> [51] 1.693868e-06 2.722346e-07 3.388544e-08 2.218356e-09 0.000000e+00
#> [56] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [61] 0.000000e+00 0.000000e+00
ppbinom(NULL, pp, wt, "RefinedNormal")
#>  [1] 2.579548e-31 1.154092e-29 4.622620e-28 1.657678e-26 5.322254e-25
#>  [6] 1.530028e-23 3.938629e-22 9.079774e-21 1.874750e-19 3.467514e-18
#> [11] 5.746244e-17 8.533855e-16 1.136134e-14 1.356415e-13 1.452852e-12
#> [16] 1.396817e-11 1.206179e-10 9.361569e-10 6.535943e-09 4.108647e-08
#> [21] 2.327971e-07 1.190272e-06 5.498496e-06 2.297918e-05 8.699487e-05
#> [26] 2.987396e-04 9.317238e-04 2.642463e-03 6.822944e-03 1.605791e-02
#> [31] 3.449132e-02 6.771307e-02 1.217242e-01 2.008508e-01 3.051866e-01
#> [36] 4.288648e-01 5.605008e-01 6.861497e-01 7.935820e-01 8.757682e-01
#> [41] 9.319564e-01 9.662451e-01 9.848984e-01 9.939312e-01 9.978181e-01
#> [46] 9.993013e-01 9.998018e-01 9.999505e-01 9.999892e-01 9.999980e-01
#> [51] 9.999997e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [56] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [61] 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:

set.seed(1)

# 10 random probabilities of success
pp <- runif(10)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0039538 -0.0006920  0.0003543  0.0000000  0.0017167  0.0023597

# 1000 random probabilities of success
pp <- runif(1000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -2.974e-06  0.000e+00  0.000e+00  0.000e+00  0.000e+00  2.270e-06

# 100000 random probabilities of success
pp <- runif(100000)
dpn <- dpbinom(NULL, pp, method = "RefinedNormal")
dpd <- dpbinom(NULL, pp)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.126e-09  0.000e+00  6.337e-13  0.000e+00  4.632e-10  2.293e-09

Processing Speed Comparisons

To assess the performance of the approximation procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
set.seed(1)

f1 <- function() dpbinom(NULL, runif(4000), method = "Normal")
f2 <- function() dpbinom(NULL, runif(4000), method = "Poisson")
f3 <- function() dpbinom(NULL, runif(4000), method = "RefinedNormal")
f4 <- function() dpbinom(NULL, runif(4000), method = "Mean")
f5 <- function() dpbinom(NULL, runif(4000), method = "GeoMean")
f6 <- function() dpbinom(NULL, runif(4000), method = "GeoMeanCounter")
f7 <- function() dpbinom(NULL, runif(4000), method = "DivideFFT")

microbenchmark(f1(), f2(), f3(), f4(), f5(), f6(), f7(), times = 51)
#> Unit: milliseconds
#>  expr    min      lq      mean  median       uq     max neval
#>  f1() 1.1876 1.53675  1.679771  1.5947  1.70300  3.4220    51
#>  f2() 1.9875 2.26175  2.435045  2.3336  2.45460  3.6417    51
#>  f3() 1.3930 1.68645  2.429490  1.7691  1.92655 12.5523    51
#>  f4() 1.7601 2.06140  2.173573  2.0982  2.18380  3.8555    51
#>  f5() 1.9121 2.20370  2.425631  2.2512  2.47990  3.9196    51
#>  f6() 1.9034 2.16790  2.342341  2.2510  2.39340  3.2313    51
#>  f7() 9.1318 9.91850 10.900441 10.3446 10.67755 21.3331    51

Clearly, the NA procedure is the fastest, followed by the PA and RNA methods. The next fastest algorithms are AMBA, GMBA-A and GMBA-B. They exhibit almost equal mean execution speed, with the AMBA algorithm being slightly faster. All of the approximation procedures outperform the fastest exact approach, DC-FFT, by far.

Generalized Poisson Binomial Distribution

Generalized Normal Approximation

The Generalized Normal Approximation (G-NA) approach is requested with method = "Normal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean and variance of the input probabilities of success (see Introduction.

set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)

dgpbinom(NULL, pp, va, vb, wt, "Normal")
#>   [1] 5.607923e-34 8.868899e-34 2.266907e-33 5.759009e-33 1.454159e-32
#>   [6] 3.649437e-32 9.103112e-32 2.256856e-31 5.561194e-31 1.362016e-30
#>  [11] 3.315478e-30 8.021587e-30 1.928965e-29 4.610400e-29 1.095224e-28
#>  [16] 2.585931e-28 6.068497e-28 1.415453e-27 3.281403e-27 7.560907e-27
#>  [21] 1.731562e-26 3.941418e-26 8.916960e-26 2.005077e-25 4.481212e-25
#>  [26] 9.954281e-25 2.197730e-24 4.822684e-24 1.051849e-23 2.280173e-23
#>  [31] 4.912836e-23 1.052075e-22 2.239296e-22 4.737247e-22 9.960718e-22
#>  [36] 2.081639e-21 4.323844e-21 8.926573e-21 1.831680e-20 3.735634e-20
#>  [41] 7.572323e-20 1.525612e-19 3.054984e-19 6.080284e-19 1.202787e-18
#>  [46] 2.364851e-18 4.621350e-18 8.976023e-18 1.732802e-17 3.324790e-17
#>  [51] 6.340586e-17 1.201834e-16 2.264174e-16 4.239603e-16 7.890246e-16
#>  [56] 1.459506e-15 2.683313e-15 4.903282e-15 8.905378e-15 1.607563e-14
#>  [61] 2.884254e-14 5.143387e-14 9.116221e-14 1.605945e-13 2.811877e-13
#>  [66] 4.893417e-13 8.464047e-13 1.455104e-12 2.486337e-12 4.222561e-12
#>  [71] 7.127579e-12 1.195799e-11 1.993996e-11 3.304764e-11 5.443857e-11
#>  [76] 8.912982e-11 1.450405e-10 2.345880e-10 3.771137e-10 6.025440e-10
#>  [81] 9.568753e-10 1.510330e-09 2.369401e-09 3.694497e-09 5.725614e-09
#>  [86] 8.819398e-09 1.350224e-08 2.054578e-08 3.107347e-08 4.670967e-08
#>  [91] 6.978689e-08 1.036313e-07 1.529531e-07 2.243755e-07 3.271469e-07
#>  [96] 4.740893e-07 6.828536e-07 9.775638e-07 1.390954e-06 1.967117e-06
#> [101] 2.765018e-06 3.862920e-06 5.363935e-06 7.402890e-06 1.015475e-05
#> [106] 1.384482e-05 1.876097e-05 2.526814e-05 3.382528e-05 4.500488e-05
#> [111] 5.951520e-05 7.822512e-05 1.021915e-04 1.326884e-04 1.712386e-04
#> [116] 2.196444e-04 2.800198e-04 3.548195e-04 4.468649e-04 5.593647e-04
#> [121] 6.959275e-04 8.605635e-04 1.057674e-03 1.292025e-03 1.568701e-03
#> [126] 1.893038e-03 2.270537e-03 2.706749e-03 3.207136e-03 3.776912e-03
#> [131] 4.420856e-03 5.143112e-03 5.946968e-03 6.834635e-03 7.807017e-03
#> [136] 8.863494e-03 1.000172e-02 1.121747e-02 1.250446e-02 1.385431e-02
#> [141] 1.525651e-02 1.669842e-02 1.816543e-02 1.964112e-02 2.110749e-02
#> [146] 2.254536e-02 2.393468e-02 2.525505e-02 2.648616e-02 2.760831e-02
#> [151] 2.860294e-02 2.945314e-02 3.014411e-02 3.066363e-02 3.100235e-02
#> [156] 3.115414e-02 3.111624e-02 3.088932e-02 3.047753e-02 2.988830e-02
#> [161] 2.913216e-02 2.822242e-02 2.717477e-02 2.600684e-02 2.473770e-02
#> [166] 2.338736e-02 2.197622e-02 2.052462e-02 1.905228e-02 1.757799e-02
#> [171] 1.611912e-02 1.469141e-02 1.330871e-02 1.198280e-02 1.072335e-02
#> [176] 9.537908e-03 8.431904e-03 7.408807e-03 6.470249e-03 5.616215e-03
#> [181] 4.845254e-03 4.154698e-03 3.540890e-03 2.999407e-03 2.525274e-03
#> [186] 2.113156e-03 1.757538e-03 1.452874e-03 1.193717e-03 9.748208e-04
#> [191] 7.912218e-04 6.382955e-04 5.117942e-04 4.078674e-04 3.230671e-04
#> [196] 2.543411e-04 1.990171e-04 1.547798e-04 1.196432e-04 9.192046e-05
#> [201] 7.019178e-05 5.327340e-05 4.018691e-05 3.013068e-05 2.245346e-05
#> [206] 1.663059e-05 1.224284e-05 8.957907e-06 6.514501e-06 1.614725e-05
pgpbinom(NULL, pp, va, vb, wt, "Normal")
#>   [1] 5.607923e-34 1.447682e-33 3.714589e-33 9.473598e-33 2.401518e-32
#>   [6] 6.050955e-32 1.515407e-31 3.772263e-31 9.333457e-31 2.295361e-30
#>  [11] 5.610840e-30 1.363243e-29 3.292208e-29 7.902608e-29 1.885484e-28
#>  [16] 4.471416e-28 1.053991e-27 2.469444e-27 5.750847e-27 1.331175e-26
#>  [21] 3.062738e-26 7.004156e-26 1.592112e-25 3.597189e-25 8.078401e-25
#>  [26] 1.803268e-24 4.000998e-24 8.823682e-24 1.934217e-23 4.214390e-23
#>  [31] 9.127226e-23 1.964798e-22 4.204093e-22 8.941340e-22 1.890206e-21
#>  [36] 3.971844e-21 8.295689e-21 1.722226e-20 3.553906e-20 7.289540e-20
#>  [41] 1.486186e-19 3.011798e-19 6.066782e-19 1.214707e-18 2.417494e-18
#>  [46] 4.782345e-18 9.403695e-18 1.837972e-17 3.570774e-17 6.895564e-17
#>  [51] 1.323615e-16 2.525449e-16 4.789624e-16 9.029227e-16 1.691947e-15
#>  [56] 3.151453e-15 5.834767e-15 1.073805e-14 1.964343e-14 3.571905e-14
#>  [61] 6.456159e-14 1.159955e-13 2.071577e-13 3.677521e-13 6.489399e-13
#>  [66] 1.138282e-12 1.984686e-12 3.439790e-12 5.926127e-12 1.014869e-11
#>  [71] 1.727627e-11 2.923425e-11 4.917421e-11 8.222186e-11 1.366604e-10
#>  [76] 2.257903e-10 3.708308e-10 6.054188e-10 9.825325e-10 1.585076e-09
#>  [81] 2.541952e-09 4.052282e-09 6.421683e-09 1.011618e-08 1.584179e-08
#>  [86] 2.466119e-08 3.816343e-08 5.870922e-08 8.978268e-08 1.364924e-07
#>  [91] 2.062792e-07 3.099106e-07 4.628636e-07 6.872392e-07 1.014386e-06
#>  [96] 1.488475e-06 2.171329e-06 3.148893e-06 4.539847e-06 6.506964e-06
#> [101] 9.271982e-06 1.313490e-05 1.849884e-05 2.590173e-05 3.605648e-05
#> [106] 4.990129e-05 6.866226e-05 9.393040e-05 1.277557e-04 1.727606e-04
#> [111] 2.322758e-04 3.105009e-04 4.126924e-04 5.453808e-04 7.166194e-04
#> [116] 9.362638e-04 1.216284e-03 1.571103e-03 2.017968e-03 2.577333e-03
#> [121] 3.273260e-03 4.133824e-03 5.191498e-03 6.483523e-03 8.052224e-03
#> [126] 9.945263e-03 1.221580e-02 1.492255e-02 1.812968e-02 2.190660e-02
#> [131] 2.632745e-02 3.147056e-02 3.741753e-02 4.425217e-02 5.205918e-02
#> [136] 6.092268e-02 7.092440e-02 8.214187e-02 9.464633e-02 1.085006e-01
#> [141] 1.237572e-01 1.404556e-01 1.586210e-01 1.782621e-01 1.993696e-01
#> [146] 2.219150e-01 2.458497e-01 2.711047e-01 2.975909e-01 3.251992e-01
#> [151] 3.538021e-01 3.832553e-01 4.133994e-01 4.440630e-01 4.750653e-01
#> [156] 5.062195e-01 5.373357e-01 5.682250e-01 5.987026e-01 6.285909e-01
#> [161] 6.577230e-01 6.859454e-01 7.131202e-01 7.391271e-01 7.638648e-01
#> [166] 7.872521e-01 8.092283e-01 8.297529e-01 8.488052e-01 8.663832e-01
#> [171] 8.825023e-01 8.971938e-01 9.105025e-01 9.224853e-01 9.332086e-01
#> [176] 9.427465e-01 9.511784e-01 9.585872e-01 9.650575e-01 9.706737e-01
#> [181] 9.755189e-01 9.796736e-01 9.832145e-01 9.862139e-01 9.887392e-01
#> [186] 9.908524e-01 9.926099e-01 9.940628e-01 9.952565e-01 9.962313e-01
#> [191] 9.970225e-01 9.976608e-01 9.981726e-01 9.985805e-01 9.989036e-01
#> [196] 9.991579e-01 9.993569e-01 9.995117e-01 9.996314e-01 9.997233e-01
#> [201] 9.997935e-01 9.998467e-01 9.998869e-01 9.999171e-01 9.999395e-01
#> [206] 9.999561e-01 9.999684e-01 9.999773e-01 9.999839e-01 1.000000e+00

A comparison with exact computation shows that the approximation quality of the NA procedure increases with larger numbers of probabilities of success:

set.seed(2)

# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -0.0346309 -0.0042919  0.0001378  0.0000000  0.0038447  0.0317044

# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.006e-05 -1.126e-09  0.000e+00  0.000e+00  1.854e-09  2.967e-05

# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "Normal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.152e-08  0.000e+00  3.060e-12  0.000e+00  8.992e-10  3.707e-08

Generalized Refined Normal Approximation

The Generalized Refined Normal Approximation (G-RNA) approach is requested with method = "RefinedNormal". It is based on a Normal distribution, whose parameters are derived from the theoretical mean, variance and skewness of the input probabilities of success.

set.seed(2)
pp <- runif(10)
wt <- sample(1:10, 10, TRUE)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#>   [1] 5.100768e-32 7.816039e-32 1.959106e-31 4.880045e-31 1.208047e-30
#>   [6] 2.971921e-30 7.265798e-30 1.765311e-29 4.262362e-29 1.022751e-28
#>  [11] 2.438814e-28 5.779315e-28 1.361012e-27 3.185186e-27 7.407878e-27
#>  [16] 1.712136e-26 3.932484e-26 8.975930e-26 2.035985e-25 4.589352e-25
#>  [21] 1.028037e-24 2.288476e-24 5.062470e-24 1.112900e-23 2.431235e-23
#>  [26] 5.278047e-23 1.138660e-22 2.441116e-22 5.200621e-22 1.101015e-21
#>  [31] 2.316333e-21 4.842591e-21 1.006056e-20 2.076983e-20 4.260973e-20
#>  [36] 8.686571e-20 1.759748e-19 3.542530e-19 7.086575e-19 1.408697e-18
#>  [41] 2.782630e-18 5.461965e-18 1.065359e-17 2.064884e-17 3.976912e-17
#>  [46] 7.611065e-17 1.447413e-16 2.735176e-16 5.135966e-16 9.582999e-16
#>  [51] 1.776730e-15 3.273256e-15 5.992053e-15 1.089949e-14 1.970017e-14
#>  [56] 3.538058e-14 6.313772e-14 1.119541e-13 1.972495e-13 3.453144e-13
#>  [61] 6.006676e-13 1.038179e-12 1.782897e-12 3.042246e-12 5.157913e-12
#>  [66] 8.688860e-12 1.454315e-11 2.418568e-11 3.996319e-11 6.560867e-11
#>  [71] 1.070186e-10 1.734408e-10 2.792769e-10 4.467944e-10 7.101774e-10
#>  [76] 1.121527e-09 1.759679e-09 2.743061e-09 4.248282e-09 6.536785e-09
#>  [81] 9.992759e-09 1.517660e-08 2.289965e-08 3.432780e-08 5.112383e-08
#>  [86] 7.564129e-08 1.111860e-07 1.623661e-07 2.355550e-07 3.394997e-07
#>  [91] 4.861107e-07 6.914779e-07 9.771650e-07 1.371840e-06 1.913307e-06
#>  [96] 2.651012e-06 3.649099e-06 4.990081e-06 6.779222e-06 9.149662e-06
#> [101] 1.226837e-05 1.634294e-05 2.162919e-05 2.843967e-05 3.715276e-05
#> [106] 4.822249e-05 6.218875e-05 7.968764e-05 1.014618e-04 1.283702e-04
#> [111] 1.613972e-04 2.016606e-04 2.504176e-04 3.090698e-04 3.791651e-04
#> [116] 4.623982e-04 5.606082e-04 6.757744e-04 8.100102e-04 9.655553e-04
#> [121] 1.144767e-03 1.350110e-03 1.584150e-03 1.849543e-03 2.149024e-03
#> [126] 2.485405e-03 2.861561e-03 3.280420e-03 3.744950e-03 4.258135e-03
#> [131] 4.822941e-03 5.442277e-03 6.118927e-03 6.855467e-03 7.654163e-03
#> [136] 8.516833e-03 9.444692e-03 1.043817e-02 1.149671e-02 1.261856e-02
#> [141] 1.380053e-02 1.503782e-02 1.632377e-02 1.764978e-02 1.900514e-02
#> [146] 2.037702e-02 2.175055e-02 2.310888e-02 2.443348e-02 2.570445e-02
#> [151] 2.690096e-02 2.800177e-02 2.898579e-02 2.983278e-02 3.052397e-02
#> [156] 3.104271e-02 3.137515e-02 3.151071e-02 3.144261e-02 3.116818e-02
#> [161] 3.068902e-02 3.001109e-02 2.914456e-02 2.810352e-02 2.690563e-02
#> [166] 2.557147e-02 2.412399e-02 2.258773e-02 2.098813e-02 1.935073e-02
#> [171] 1.770044e-02 1.606093e-02 1.445398e-02 1.289904e-02 1.141287e-02
#> [176] 1.000927e-02 8.699011e-03 7.489773e-03 6.386301e-03 5.390581e-03
#> [181] 4.502114e-03 3.718233e-03 3.034469e-03 2.444914e-03 1.942594e-03
#> [186] 1.519822e-03 1.168521e-03 8.805066e-04 6.477360e-04 4.625001e-04
#> [191] 2.621189e-04 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [196] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [201] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
#> [206] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
pgpbinom(NULL, pp, va, vb, wt, "RefinedNormal")
#>   [1] 5.100768e-32 1.291681e-31 3.250786e-31 8.130831e-31 2.021130e-30
#>   [6] 4.993051e-30 1.225885e-29 2.991196e-29 7.253558e-29 1.748106e-28
#>  [11] 4.186920e-28 9.966236e-28 2.357636e-27 5.542822e-27 1.295070e-26
#>  [16] 3.007206e-26 6.939690e-26 1.591562e-25 3.627547e-25 8.216899e-25
#>  [21] 1.849727e-24 4.138203e-24 9.200673e-24 2.032968e-23 4.464203e-23
#>  [26] 9.742250e-23 2.112885e-22 4.554002e-22 9.754623e-22 2.076477e-21
#>  [31] 4.392810e-21 9.235402e-21 1.929596e-20 4.006579e-20 8.267552e-20
#>  [36] 1.695412e-19 3.455160e-19 6.997690e-19 1.408427e-18 2.817123e-18
#>  [41] 5.599754e-18 1.106172e-17 2.171531e-17 4.236415e-17 8.213328e-17
#>  [46] 1.582439e-16 3.029852e-16 5.765028e-16 1.090099e-15 2.048399e-15
#>  [51] 3.825129e-15 7.098385e-15 1.309044e-14 2.398993e-14 4.369010e-14
#>  [56] 7.907068e-14 1.422084e-13 2.541625e-13 4.514120e-13 7.967264e-13
#>  [61] 1.397394e-12 2.435573e-12 4.218470e-12 7.260717e-12 1.241863e-11
#>  [66] 2.110749e-11 3.565064e-11 5.983632e-11 9.979950e-11 1.654082e-10
#>  [71] 2.724267e-10 4.458675e-10 7.251445e-10 1.171939e-09 1.882116e-09
#>  [76] 3.003643e-09 4.763322e-09 7.506383e-09 1.175466e-08 1.829145e-08
#>  [81] 2.828421e-08 4.346081e-08 6.636046e-08 1.006883e-07 1.518121e-07
#>  [86] 2.274534e-07 3.386394e-07 5.010055e-07 7.365605e-07 1.076060e-06
#>  [91] 1.562171e-06 2.253649e-06 3.230814e-06 4.602653e-06 6.515960e-06
#>  [96] 9.166972e-06 1.281607e-05 1.780615e-05 2.458537e-05 3.373504e-05
#> [101] 4.600341e-05 6.234634e-05 8.397554e-05 1.124152e-04 1.495680e-04
#> [106] 1.977905e-04 2.599792e-04 3.396668e-04 4.411286e-04 5.694988e-04
#> [111] 7.308960e-04 9.325566e-04 1.182974e-03 1.492044e-03 1.871209e-03
#> [116] 2.333607e-03 2.894215e-03 3.569990e-03 4.380000e-03 5.345555e-03
#> [121] 6.490322e-03 7.840432e-03 9.424583e-03 1.127413e-02 1.342315e-02
#> [126] 1.590855e-02 1.877011e-02 2.205053e-02 2.579549e-02 3.005362e-02
#> [131] 3.487656e-02 4.031884e-02 4.643777e-02 5.329323e-02 6.094740e-02
#> [136] 6.946423e-02 7.890892e-02 8.934709e-02 1.008438e-01 1.134624e-01
#> [141] 1.272629e-01 1.423007e-01 1.586245e-01 1.762743e-01 1.952794e-01
#> [146] 2.156564e-01 2.374070e-01 2.605159e-01 2.849493e-01 3.106538e-01
#> [151] 3.375548e-01 3.655565e-01 3.945423e-01 4.243751e-01 4.548991e-01
#> [156] 4.859418e-01 5.173169e-01 5.488276e-01 5.802702e-01 6.114384e-01
#> [161] 6.421274e-01 6.721385e-01 7.012831e-01 7.293866e-01 7.562922e-01
#> [166] 7.818637e-01 8.059877e-01 8.285754e-01 8.495636e-01 8.689143e-01
#> [171] 8.866147e-01 9.026757e-01 9.171296e-01 9.300287e-01 9.414415e-01
#> [176] 9.514508e-01 9.601498e-01 9.676396e-01 9.740259e-01 9.794165e-01
#> [181] 9.839186e-01 9.876368e-01 9.906713e-01 9.931162e-01 9.950588e-01
#> [186] 9.965786e-01 9.977471e-01 9.986276e-01 9.992754e-01 9.997379e-01
#> [191] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [196] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [201] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
#> [206] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

A comparison with exact computation shows that the approximation quality of the RNA procedure increases with larger numbers of probabilities of success:

set.seed(2)

# 10 random probabilities of success
pp <- runif(10)
va <- sample(0:10, 10, TRUE)
vb <- sample(0:10, 10, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -3.045e-02 -4.084e-03  1.727e-04  1.179e-05  4.324e-03  3.161e-02

# 100 random probabilities of success
pp <- runif(100)
va <- sample(0:100, 100, TRUE)
vb <- sample(0:100, 100, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -8.831e-06  0.000e+00  1.000e-12  9.000e-12  3.642e-07  1.333e-05

# 1000 random probabilities of success
pp <- runif(1000)
va <- sample(0:1000, 1000, TRUE)
vb <- sample(0:1000, 1000, TRUE)
dpn <- dgpbinom(NULL, pp, va, vb, method = "RefinedNormal")
dpd <- dgpbinom(NULL, pp, va, vb)
idx <- which(dpn != 0 & dpd != 0)
summary((dpn - dpd)[idx])
#>       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
#> -1.980e-08  0.000e+00  4.960e-12  0.000e+00  1.561e-09  3.197e-08

Processing Speed Comparisons

To assess the performance of the approximation procedures, we use the microbenchmark package. Each algorithm has to calculate the PMF repeatedly based on random probability vectors. The run times are then summarized in a table that presents, among other statistics, their minima, maxima and means. The following results were recorded on an AMD Ryzen 9 5900X with 64 GiB of RAM and Windows 10 Education (22H2).

library(microbenchmark)
n <- 1500
set.seed(2)
va <- sample(1:50, n, TRUE)
vb <- sample(1:50, n, TRUE)

f1 <- function() dgpbinom(NULL, runif(n), va, vb, method = "Normal")
f2 <- function() dgpbinom(NULL, runif(n), va, vb, method = "RefinedNormal")
f3 <- function() dgpbinom(NULL, runif(n), va, vb, method = "DivideFFT")

microbenchmark(f1(), f2(), f3(), times = 51)
#> Unit: milliseconds
#>  expr     min       lq     mean  median       uq     max neval
#>  f1() 13.9485 15.06530 16.01232 15.3961 15.75495 21.7301    51
#>  f2() 14.9863 16.63805 17.31783 16.9915 17.42155 24.1676    51
#>  f3() 47.9939 49.83140 51.69420 50.4454 51.70345 71.8334    51

Clearly, the G-NA procedure is the fastest, followed by the G-RNA method. Both are hugely faster than G-DC-FFT.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.