The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Physiological and Stress Indices for Crop Evaluation
Version: 0.1.0
Maintainer: Vinayaka <vinayaka.b3vs@gmail.com>
Description: Crop production systems are increasingly challenged by climate variability, resource limitations, and biotic–abiotic stresses. In this context, stress tolerance indices and physiological trait estimators are essential tools to identify stable and superior genotypes, quantify yield stability under stress versus non-stress conditions, and understand plant adaptive responses. The 'PhysioIndexR' package provides a unified framework to compute commonly used stress indices, physiological traits, and derived metrics that are critical in crop improvement, crop physiology, and other agricultural sciences. The package includes functions to calculate classical stress tolerance indices (See Lamba et al., 2023; <doi:10.1038/s41598-023-37634-8>) such as Tolerance (TOL), Stress Tolerance Index (STI), Stress Susceptibility Percentage Index (SSPI), Yield Index (YI), Yield Stability Index (YSI), Relative Stress Index (RSI), Mean Productivity (MP), Geometric Mean Productivity (GMP), Harmonic Mean (HM), Mean Relative Performance (MRP), and Percent Yield Reduction (PYR), along with a convenience wrapper all_indices() that returns all indices simultaneously. The function mfvst_from_indices() integrates these indices into a composite stress score using direction-aware membership values (0–1 scaling) and also averaging, facilitating genotype ranking and selection (See Vinu et al., 2025; <doi:10.1007/s12355-025-01595-1>). The package also implements two novel composite functions: WMFVST(), which computes the Weighted Mean Membership Function Value for Stress Tolerance, and WASI(), which computes the Weighted Average Stress Index, both derived from membership function values (MFV) and raw stress index values, respectively. Beyond stress indices, the package provides functions for key physiological traits relevant to sugarcane and other crops: bmap() computes biomass accumulation and partitioning between leaf, cane/shoot, and root fractions. chl() estimates total chlorophyll content from Soil-Plant Analysis Development (SPAD) and Chlorophyll Content Index (CCI) values using validated quadratic models particularly for sugarcane (See Krishnapriya et al., 2020; <doi:10.37580/JSR.2019.2.9.150-163>). ctd() calculates canopy temperature depression (CTD) from ambient and canopy temperatures, an important indicator of transpiration efficiency. growth() computes key growth analysis parameters, including Leaf Area Index (LAI), Net Assimilation Rate (NAR), and Crop Growth Rate (CGR) across crop growth stages (See Watson, 1958; <doi:10.1093/oxfordjournals.aob.a083596>). ranking() provides flexible ranking utilities for genotype performance with multiple tie-handling and NA-placement options. Through these tools, the package enables researchers to: (i) quantify crop responses to stress environments, (ii) partition physiological components of yield, (iii) integrate multiple indices into composite metrics for genotype evaluation, and (iv) facilitate informed decision making in breeding pipelines, and plant physiology experiments. By combining physiology-based traits with quantitative stress indices, 'PhysioIndexR' supports comprehensive crop evaluation and helps researchers identify multi-stress-resilient superior genotypes, thereby contributing to genetic improvement and ensuring sustainable production of food, fuel, and fibre in the era of limited resources and climate change.
Imports: stats
License: GPL-3
Encoding: UTF-8
Depends: R (≥ 4.1)
RoxygenNote: 7.3.3
NeedsCompilation: no
Packaged: 2025-11-08 06:32:30 UTC; user
Author: Vinayaka ORCID iD [aut, cre], Vengavasi Krishnapriya ORCID iD [aut, ctb], T. Lakshmi Pathy ORCID iD [aut, ctb], Amaresh ORCID iD [aut, ctb], K. Gopalareddy ORCID iD [aut, ctb], G.S. Suresha ORCID iD [aut, ctb], P. Govindaraj [aut, ctb]
Repository: CRAN
Date/Publication: 2025-11-12 10:50:01 UTC

Chlorophyll concentration from non-destructive indices (Chl)

Description

This function computes total chlorophyll content derived from SPAD (Soil-Plant Analysis Development) value (TCHLSPAD), and total chlorophyll content derived from CCI (Chlorophyll Content Index) value (TCHLCCI). For more details see Krishnapriya et al. (2020) doi:10.37580/JSR.2019.2.9.150-163.

Usage

Chl(Gen, SPAD_PI, CCI_PI)

Arguments

Gen

Character vector of Genotype IDs.

SPAD_PI

Numeric vector of SPAD (Soil-Plant Analysis Development) values for phase I (PI).

CCI_PI

Numeric vector of CCI (Chlorophyll Content Index) values for phase I (PI).

Value

A list of output columns:

References

Krishnapriya, V., Arunkumar, R., Gomathi, R. and Vasantha, S. (2020). doi:10.37580/JSR.2019.2.9.150-163.

Examples

# Creating a sample dataset
Gen = c("V1","V2","V3")
SPAD_PI = c(43.1,44.6,38.6)
CCI_PI  = c(27.3,30.4,21.3)
Chl(Gen, SPAD_PI, CCI_PI)


Geometric Mean Productivity (GMP)

Description

This function computes Geometric Mean Productivity (GMP) using any traits (like yield) under stress and non-stress conditions. The lower values of GMP indicates greater tolerance. For more details see Fernandez (1992).

Usage

GMP(Gen, YN, YS)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

Value

A data frame with Gen, GMP.

GMP = \sqrt{YN \times YS}

References

Fernandez, G.C.J. (1992). Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress. AVRDC Publication: Tainan, Taiwan: Shanhua: Chapter (25), 257–270.

Examples

out=GMP(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
print(out)

Harmonic Mean (HM)

Description

This function computes Harmonic Mean (HM) using any traits (like yield) under stress and non-stress conditions. The lower values of HM indicates greater tolerance. For more details see Bidinger et al. (1987) doi:10.1071/AR9870037.

Usage

HM(Gen, YN, YS)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

Value

A data frame with Gen, HM.

HM = \frac{2 \times YN \times YS}{YN + YS}

References

Bidinger, F.R., Mahalakshmi, V. and Rao, G.D.P. (1987). doi:10.1071/AR9870037.

Examples

out = HM(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
print(out)

Mean Productivity (MP)

Description

This function computes Mean Productivity (MP) using any traits (like yield) under stress and non-stress conditions. The lower values of MP indicates greater tolerance. For more details see Rosielle and Hamblin (1981) doi:10.2135/cropsci1981.0011183X002100060033x.

Usage

MP(Gen, YN, YS)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

Value

A data frame with Gen, MP.

MP = \frac{YN + YS}{2}

References

Rosielle, A.A. and Hamblin, J. (1981). <10.2135/cropsci1981.0011183X002100060033x>.

Examples

out = MP(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
print(out)

Mean Relative Performance (MRP)

Description

This function computes Mean Relative Performance (MRP) using any traits (like yield) under stress and non-stress conditions. The lower values of MRP indicates greater tolerance. For more details see Ramirez-Vallejo and Kelly (1998) doi:10.1023/A:1018353200015.

Usage

MRP(Gen, YN, YS, YMN = NULL, YMS = NULL)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

YMN

Optional numeric scalar: mean of YN. If NULL, computed.

YMS

Optional numeric scalar: mean of YS. If NULL, computed.

Value

A list with YMN, YMS, and Result (data frame with Gen, MRP).

MRP = \left(\frac{YS}{YMS}\right) + \left(\frac{YN}{YMN}\right)

References

Ramirez-Vallejo, P. and Kelly, J.D. (1998). doi:10.1023/A:1018353200015.

Examples

out = MRP(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
print(out)

Percent Yield Reduction (PYR)

Description

This function computes Percent Yield Reduction (PYR) using any traits (like yield) under stress and non-stress conditions. The lower values of PYR indicates greater tolerance. For more details see Farshadfar and Javadinia (2011).

Usage

PYR(Gen, YN, YS)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

Value

A data frame with Gen, PYR.

PYR = \frac{(YN - YS)}{YN} \times 100

References

Farshadfar, E. and Javadinia, J. (2011). Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvement Journal, 27(4), 517–537.

Examples

out = PYR(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
print(out)

Relative Stress Index (RSI)

Description

This function computes Relative Stress Index (RSI) using any traits (like yield) under stress and non-stress conditions. The lower values of RSI indicates greater tolerance. For more details see Fischer and Wood (1979) doi:10.1071/AR9791001.

Usage

RSI(Gen, YN, YS, YMN = NULL, YMS = NULL)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

YMN

Optional numeric scalar: mean of YN. If NULL, computed.

YMS

Optional numeric scalar: mean of YS. If NULL, computed.

Value

A list with YMN, YMS, and Result (data frame with Gen, RSI).

RSI = \frac{(YN/YS)}{(YMS/YMN)}

References

Fischer, R.A. and Wood, J.T. (1979). Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research, 30(6), 1001-1020.

Examples

out = RSI(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
print(out)

Stress Susceptibility Percentage Index (SSPI)

Description

This function computes Stress Susceptibility Percentage Index (SSPI) using any traits (like yield) under stress and non-stress conditions. The lower values of SSPI indicates greater tolerance. For more details see Moosavi et al. (2008).

Usage

SSPI(Gen, YN, YS, YMN = NULL)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

YMN

Optional numeric scalar: mean of YN. If NULL, computed.

Value

A list with YMN and Result (data frame with Gen, SSPI).

SSPI = \frac{(YN - YS)}{2 \times YMN} \times 100

References

Mousavi, S.S., YAZDI, S.B., Naghavi, M.R., Zali, A.A., Dashti, H. and Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 12, 165–178.

Examples

out=SSPI(Gen=c("G1","G2","G3"), YN=c(10,8,5), YS=c(7,5,3))
print(out)

Stress Tolerance Index (STI)

Description

This function computes stress tolerance index (STI) using any traits (like yield) under stress and non-stress conditions. The lower values of STI indicates greater tolerance. For more details see Fernandez (1992).

Usage

STI(Gen, YN, YS, YMN = NULL)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

YMN

Optional numeric scalar: mean of YN. If NULL, computed as mean(YN, na.rm=TRUE).

Value

A list of components:

STI = \frac{YN \times YS}{(YMN)^2}

References

Fernandez, G.C.J. (1992). Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress. AVRDC Publication: Tainan, Taiwan: Shanhua: Chapter (25), 257–270.

Examples

out=STI(Gen=c("G1","G2","G3"), YN=c(10,8,5), YS=c(7,5,3))
print(out)

Stress Tolerance (TOL)

Description

This function computes stress tolerance (TOL) using any traits like yield under stress and non-stress conditions. The lower values of TOL indicates greater tolerance. For more details see Rosielle and Hamblin (1981) doi:10.2135/cropsci1981.0011183X002100060033x.

Usage

TOL(Gen, YN, YS)

Arguments

Gen

Character vector of Genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

Value

A list of output columns:

TOL = YN - YS

References

Rosielle, A.A. and Hamblin, J. (1981). doi:10.2135/cropsci1981.0011183X002100060033x.

Examples

TOL(Gen=c("G1","G2","G3"), YN=c(10,8,5), YS=c(7,5,3))


Weighted Average Stress Index (WASI)

Description

A composite measure that computes the weighted mean for each genotype across multiple stress indices, accounting for whether higher or lower values are better.

Usage

WASI(data, decimals = 5)

Arguments

data

A data frame containing genotype IDs (Gen) and stress index values (GMP, HM, MP, MRP, PYR, RSI, SSPI, STI, TOL, YI, YSI).

decimals

Integer; number of decimal places to use for Excel-style data. All indices are rounded to this precision before ranking and again for the index × rank products (default 5).

Details

The Weighted Average Stress Index for genotype i is

WASI_i = \frac{\sum_{j=1}^{k} (X_{ij} \times R_{ij})}{\sum_{j=1}^{k} R_{ij}},

where X_{ij} is the value of genotype i for index j, and R_{ij} is its rank, determined by whether higher or lower values are favorable. Ranks use Excel-like behavior (ties.method = "min"). Indices are rounded to decimals places prior to ranking and multiplication to better match Excel-style calculations.

Value

A data frame with Gen and its computed WASI (sorted in descending order).

Examples

df <- data.frame(
Gen = paste0("G", 1:5),
GMP  = c(1:5),
HM   = c(6:10),
MP   = c(11:15),
MRP  = c(16:20),
PYR  = c(21:25),
RSI  = c(26:30),
SSPI = c(31:35),
STI  = c(0.1, 0.2, 0.3, 0.4, 0.5),
TOL  = c(41:45),
YI   = c(0.6, 0.7, 0.8, 0.9, 1.0),
YSI  = c(0.2, 0.3, 0.4, 0.5, 0.6)
)
WASI(df)


Weighted Mean Membership Function Value for Stress Tolerance (WMFVST)

Description

Its a composite measure which computes the weighted mean of MFVST values (0–1 range) for each genotype across multiple stress indices, considering whether higher or lower values are better.

Usage

WMFVST(data)

Arguments

data

A data frame containing genotype IDs (Gen) and MFVST values for the indices (GMP, HM, MP, MRP, PYR, RSI, SSPI, STI, TOL, YI, YSI), each within the range of 0 to 1.

Details

The Weighted Mean MFVST for genotype i is:

WMFVST_i = \frac{\sum_{j=1}^{k} (MFVST_{ij} \times R_{ij})} {\sum_{j=1}^{k} R_{ij}}

where MFVST_{ij} is the MFVST value of genotype i for index j, and R_{ij} is its rank, determined by whether higher or lower values are favorable.

Value

A data frame with Gen and its Weighted Mean MFVST (WMFVST).

Examples

set.seed(123)
df <- data.frame(
  Gen = paste0("G", 1:5),
  GMP  = runif(5),
  HM   = runif(5),
  MP   = runif(5),
  MRP  = runif(5),
  PYR  = runif(5),
  RSI  = runif(5),
  SSPI = runif(5),
  STI  = runif(5),
  TOL  = runif(5),
  YI   = runif(5),
  YSI  = runif(5)
)
WMFVST(df)

Yield Index (YI)

Description

This function computes Yield Index (YI) using any traits (like yield) under stress and non-stress conditions. The lower values of YI indicates greater tolerance. For more details see Gavuzzi et al. (1997) doi:10.4141/P96-130.

Usage

YI(Gen, YS, YMS = NULL)

Arguments

Gen

Character vector of genotype identifiers.

YS

Numeric vector: yield (any trait) under stress environment.

YMS

Optional numeric scalar: mean of YS. If NULL, computed.

Value

A list with YMS and Result (data frame with Gen, YI).

YI = \frac{YS}{YMS}

References

Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R.G., Ricciardi, G.L. and Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531.

Examples

out = YI(Gen=c("G1","G2","G3"), YS=c(7,5,3))
print(out)

Yield Stability Index (YSI)

Description

This function computes Yield Stability Index (YSI) using any traits (like yield) under stress and non-stress conditions. The lower values of YSI indicates greater tolerance. For more details see Bouslama and Schapaugh (1984) doi:10.2135/cropsci1984.0011183X002400050026x.

Usage

YSI(Gen, YN, YS)

Arguments

Gen

Character vector of genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

Value

A data frame with columns Gen, YSI.

YSI = \frac{YS}{YN}

References

Bouslama, M. and Schapaugh Jr, W.T. (1984). doi:10.2135/cropsci1984.0011183X002400050026x.

Examples

out = YSI(Gen=c("G1","G2","G3"), YN=c(10,8,5), YS=c(7,5,3))
print(out)

Computation of All Stress Indices at Once

Description

A convenience function that returns a data frame with 11 stress indices—Stress Tolerance (TOL), Stress Tolerance Index (STI), Stress Susceptibility Percentage Index (SSPI), Yield Index (YI), Yield Stability Index (YSI), Relative Stress Index (RSI), Mean Productivity (MP), Geometric Mean Productivity (GMP), Harmonic Mean (HM), Mean Relative Performance (MRP), and Percent Yield Reduction (PYR)—for the same given inputs (Lamba et al., 2023; doi:10.1038/s41598-023-37634-8).

Usage

all_indices(
  Gen,
  YN,
  YS,
  YMN = NULL,
  YMS = NULL,
  include_inputs = TRUE,
  name_vectors_by_gen = TRUE
)

Arguments

Gen

Character vector of Genotype identifiers.

YN

Numeric vector: yield (any trait) under non-stress (normal) environment.

YS

Numeric vector: yield (any trait) under stress environment.

YMN, YMS

Optional numeric scalars for environment means. If NULL, computed.

include_inputs

Logical; if TRUE returns a list with YMN, YMS, and all.

name_vectors_by_gen

Ignored; kept for backward compatibility.

Value

If include_inputs=TRUE, a list with YMN, YMS, and all data frame.

References

Lamba, K., Kumar, M., Singh, V. et al. (2023). doi:10.1038/s41598-023-37634-8.

Examples

out <- all_indices(
Gen=c("G1","G2","G3"),
YN=c(10,8,5), YS=c(7,5,3)
)
print(out)

Biomass Accumulation and Partitioning (bmap)

Description

This function computes total above-ground biomass (TBM), root:shoot ratios, and biomass partitioning to leaf and cane/crop yield across stages/phases PI–PIII. For more details see Krishnapriya et al. (2020) doi:10.37580/JSR.2019.2.9.150-163. Here observations are recorded on the variables-Plant height (PH), Root length (RL), Leaf dry weight (LDW), Cane dry weight (CDW), and Root dry weight (RDW) at the distinct time interval (number of days between observations recorded) phases (PI-PIII)

Usage

bmap(data)

Arguments

data

A data frame with column:

  • Gen: Character vector of Genotype IDs.

  • LDW_PI, LDW_PII, LDW_PIII: Leaf dry weight (LDW) for three distinct phases I-III (PI-PIII).

  • CDW_PI, CDW_PII, CDW_PIII: Cane/crop dry weight (CDW) for three distinct phases I-III (PI-PIII).

  • RDW_PI: Root dry weight (RDW) for phase I (PI).

  • RL_PI: Root length (RL) for phase I (PI).

  • PH_PI: Plant height (PH) for phase I (PI).

Value

A list of result columns:

References

Krishnapriya, V., Arunkumar, R., Gomathi, R. and Vasantha, S. (2020). doi:10.37580/JSR.2019.2.9.150-163.

Examples

# Creating a sample dataset
df <- data.frame(
Gen = c("V1","V2","V3"),
PH_PI  = c(161.0,144.0,158.0),
PH_PII = c(212.0,189.0,200.0),
PH_PIII= c(243.0,223.0,240.0),
RL_PI  = c(98.2,83.5,72.7),
LDW_PI = c(83.9,136.1,137.6),
CDW_PI = c(36.1,55.9,57.3),
RDW_PI = c(17.7,19.2,12.4),
LDW_PII= c(138.5,193.2,183.0),
CDW_PII= c(76.2,136.4,145.0),
LDW_PIII=c(292.2,386.5,450.1),
CDW_PIII=c(190.4,336.8,323.4)
)
bmap(df)


Canopy Temperature Depression (CTD)

Description

This function computes canopy temperature depression (CTD). For more details see Watson (1958) doi:10.1093/oxfordjournals.aob.a083596.

Usage

ctd(Gen, amb.temp, CT_PI)

Arguments

Gen

Character vector of genotype IDs.

amb.temp

Numeric scalar; ambient temperature (°C) (user must define this input).

CT_PI

Numeric vector; canopy temperature (°C) at phase I (PI).

Value

A list of output columns:

References

Watson, D.J. (1958). doi:10.1093/oxfordjournals.aob.a083596.

Examples

# Creating a sample dataset
df <- data.frame(
Gen = c("V1","V2","V3"),
CT_PI   = c(26.7,31.4,28.4)
)
ctd(df$Gen, amb.temp = 34.2, CT_PI = df$CT_PI)


Growth Indices

Description

This function computes genotype (Gen) wise growth indices-leaf area index (LAI), net assimilation rate (NAR), and crop growth rate (CGR) for time intervals between distinct stages/phases (days). For more details see Williams (1946), and Watson (1958) doi:10.1093/oxfordjournals.aob.a083596.

Usage

growth(data, gr.area, t.interval1, t.interval2)

Arguments

data

Data frame with input columns:

  • Gen: Character vector of Genotype IDs.

  • LDW_PI, LDW_PII, LDW_PIII: Leaf dry weight (LDW) for three distinct phases I-III (PI-PIII).

  • CDW_PI, CDW_PII, CDW_PIII: Cane/crop dry weight (CDW) for three distinct phases I-III (PI-PIII).

  • LA_PI, LA_PII, LA_PIII): Leaf area (LA) for three distinct phases I-III (PI-PIII).

gr.area

Ground area occupied by the sample (cm^2 or m^2, same unit as that of leaf area) (user must define this input).

t.interval1

Time interval (days) between consecutive sampling phases PI and PII (user must define this input).

t.interval2

Time interval (days) between consecutive sampling phases PII and PIII (user must define this input).

Value

A list of result components:

References

Williams, R.F. (1946). The physiology of plant growth with special reference to the concept of net assimilation rate. Annals of Botany, 10(37), 41-72.

Watson, D.J. (1958). doi:10.1093/oxfordjournals.aob.a083596.

Examples

# Creating a sample dataset
df <- data.frame(
Gen = c("V1","V2","V3"),
LA_PI  = c(599.4,544.4,573.2),
LA_PII = c(1533.4,1088.0,1633.1),
LA_PIII= c(1111.2,866.0,1181.0),
LDW_PI = c(83.9,136.1,137.6),
CDW_PI = c(36.1,55.9,57.3),
LDW_PII= c(138.5,193.2,183.0),
CDW_PII= c(76.2,136.4,145.0),
LDW_PIII=c(292.2,386.5,450.1),
CDW_PIII=c(190.4,336.8,323.4)
)
growth(df, gr.area = 250, t.interval1 = 30, t.interval2 = 60)


Membership Function Value for Stress Tolerance (MFVST)

Description

This function computes membership function scores (0..1) for each available index column using min–max scaling with direction awareness, then aggregates them into a simple average MFVST. For more details see Vinu et al. (2025) doi:10.1007/s12355-025-01595-1.

Usage

mfvst_from_indices(
  df,
  gen_col = "Gen",
  lower_better = c("TOL", "SSPI", "RSI", "PYR"),
  higher_better = c("STI", "YI", "YSI", "MP", "GMP", "HM", "MRP"),
  weights = NULL,
  robust = FALSE,
  probs = c(0.01, 0.99)
)

Arguments

df

A data frame containing the stress indices (e.g., from all_indices()$all).

gen_col

Name of genotype column; if present, it is included in the output.

lower_better

Character vector listing indices where a lower value is preferred.

higher_better

Character vector listing indices where a higher value is preferred.

weights

Optional named numeric vector of weights for indices.

robust

Logical; if TRUE, winsorizes by probs.

probs

Two-element numeric vector of quantiles for robust winsorization.

Value

A list with $MFVST_indexwise: a data frame that contains per-index membership columns (suffix "_M") and the average MFVST, that is, Mean_MFVST.

References

Vinu, V., Lakshmi Pathy, T., Mahadeva Swamy, H.K. et al. (2025). doi:10.1007/s12355-025-01595-1.

Examples

df <- all_indices(
Gen=c("G1","G2","G3"),
YN=c(10,8,5),
YS=c(7,5,3)
)
df1 <- as.data.frame(df$all)
mfvst <- mfvst_from_indices(df1)
print(mfvst)

Flexible Ranking Utility

Description

A thin wrapper around base rank with support for ascending/descending order, multiple tie strategies, NA placement, and dense ranks.

Usage

ranking(
  v,
  direction = c("asc", "desc"),
  ties = c("average", "min", "max", "first", "random"),
  na.last = c("keep", "bottom", "top"),
  dense = FALSE
)

Arguments

v

Numeric (or coercible) vector to rank.

direction

Character, one of "asc" or "desc".

ties

Character, tie-breaking: one of "average", "min", "max", "first", "random".

na.last

Character, placement of NAs: "keep", "bottom", or "top".

dense

Logical; if TRUE, returns dense ranks (1,2,3,...) without gaps.

Value

An integer/numeric vector of ranks, same length as v.

Examples

ranking(c(3, 3, 2, NA, 5), direction="asc", ties="min", na.last="bottom")
ranking(c(3, 3, 2, 5), direction = "desc", dense = TRUE)
Gen=c("G1","G2","G3")
YN=c(10,8,5)
YS=c(7,5,3)
a=STI(Gen, YN, YS) # for instance STI taken here.
out=data.frame(a$Result$Gen, a$Result$STI,
ranking(a$Result$STI, direction="desc")
)
print(out)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.