The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
PepMapViz: A Versatile Toolkit for Peptide Mapping, Visualization, and Comparative Exploration ================
PepMapViz is a versatile R visualization package that empowers researchers with comprehensive visualization tools for seamlessly mapping peptides to protein sequences, identifying distinct domains and regions of interest, accentuating mutations, and highlighting post-translational modifications, all while enabling comparisons across diverse experimental conditions. Potential applications of PepMapViz include the visualization of cross-software mass spectrometry results at the peptide level for specific protein and domain details in a linearized format and post-translational modification coverage across different experimental conditions; unraveling insights into disease mechanisms. It also enables visualization of MHC-presented peptide clusters in different antibody regions predicting immunogenicity in antibody drug development.
You can install the development version of PepMapViz from GitHub
using the devtools
package.
# Install devtools if you haven't already
install.packages("devtools")
# Install PepMapViz from the package
::build()
devtools::install() devtools
This is a basic example which shows you how to solve a common problem:
library(PepMapViz)
# Read all files from a folder
<- system.file("extdata", package = "PepMapViz")
folder_path <- combine_files_from_folder(folder_path)
resulting_df
# Strip the sequence
<- strip_sequence(resulting_df, "Peptide", "Sequence", "PEAKS")
striped_data_peaks
# Extract modifications information
<- data.frame(PTM_mass = c("15.99", ".98", "57.02"),
PTM_table PTM_type = c("Ox", "Deamid", "Cam"))
<- obtain_mod(
converted_data_peaks
striped_data_peaks,"Peptide",
"PEAKS",
strip_seq_col = NULL,
PTM_table,PTM_annotation = TRUE,
PTM_mass_column = "PTM_mass"
)
# Match peptide sequence with provided sequence and calculate positions
<- data.frame(
whole_seq Epitope = c("Boco", "Boco"),
Chain = c("HC", "LC"),
Region_Sequence = c("QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGEISPFGGRTNYNEKFKSRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARERPLYASDLWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPSSIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK",
"DIQMTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYSASYRYTGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQRYSLWRTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC"
)
)<- match_and_calculate_positions(
matching_result
converted_data_peaks,'Sequence',
whole_seq,match_columns = NULL,
sequence_length = c(10, 30),
column_keep = c(
"PTM_mass",
"PTM_position",
"reps",
"Area",
"Donor",
"PTM_type"
)
)
# Quantify matched peptide sequences by PSM
= c("Chain", "Epitope")
matching_columns = c("Donor")
distinct_columns <- peptide_quantification(
data_with_psm
whole_seq,
matching_result,
matching_columns,
distinct_columns,quantify_method = "PSM",
with_PTM = TRUE,
reps = TRUE
)<- data.frame(
region Epitope = c("Boco", "Boco", "Boco", "Boco", "Boco", "Boco"),
Chain = c("HC", "HC", "HC", "HC", "LC", "LC"),
Region = c("VH", "CH1", "CH2", "CH3", "VL", "CL"),
Region_start = c(1,119,229,338,1,108),
Region_end = c(118,228,337,444,107,214)
)<- data.frame()
result_with_psm for (i in 1:nrow(region)) {
<- region$Chain[i]
chain <- region$Region_start[i]
region_start <- region$Region_end[i]
region_end <- region$Region[i]
region_name
<- data_with_psm[data_with_psm$Chain == chain &
temp $Position >= region_start &
data_with_psm$Position <= region_end, ]
data_with_psm$Region <- region_name
temp
<- rbind(result_with_psm, temp)
result_with_psm
}
head(result_with_psm)
## Character Position Chain Epitope PSM Donor PTM PTM_type Region
## 1 Q 1 HC Boco 0 D1 FALSE <NA> VH
## 2 V 2 HC Boco 0 D1 FALSE <NA> VH
## 3 Q 3 HC Boco 0 D1 FALSE <NA> VH
## 4 L 4 HC Boco 0 D1 FALSE <NA> VH
## 5 V 5 HC Boco 0 D1 FALSE <NA> VH
## 6 Q 6 HC Boco 0 D1 FALSE <NA> VH
# Plotting peptide in whole provided sequence
<- data.frame(
domain domain_type = c("CDR H1", "CDR H2", "CDR H3", "CDR L1", "CDR L2", "CDR L3"),
Region = c("VH", "VH", "VH", "VL", "VL", "VL"),
Epitope = c("Boco", "Boco", "Boco", "Boco", "Boco", "Boco"),
domain_start = c(26, 50, 97, 24, 50, 89),
domain_end = c(35, 66, 107, 34, 56, 97)
)<- c("Region")
x_axis_vars <- c("Donor")
y_axis_vars <- list(
column_order Donor = "D1,D2,D3,D4,D5,D6,D7,D8",
Region = "VH,CH1,CH2,CH3,VL,CL"
)<- c(
domain_color "CDR H1" = "#F8766D",
"CDR H2" = "#B79F00",
"CDR H3" = "#00BA38",
"CDR L1" = "#00BFC4",
"CDR L2" = "#619CFF",
"CDR L3" = "#F564E3"
)<- c(
PTM_color "Ox" = "red",
"Deamid" = "cyan",
"Cam" = "blue",
"Acetyl" = "magenta"
)= list(Donor = "D1")
label_value
<- create_peptide_plot(
p_psm
result_with_psm,
y_axis_vars,
x_axis_vars,y_expand = c(0.2, 0.2),
x_expand = c(0.5, 0.5),
theme_options = list(legend.box = "horizontal"),
labs_options = list(title = "PSM Plot", x = "Position", fill = "PSM"),
color_fill_column = 'PSM',
fill_gradient_options = list(limits = c(0, 160)), # Set the limits for the color scale
label_size = 1.9,
add_domain = TRUE,
domain = domain,
domain_start_column = "domain_start",
domain_end_column = "domain_end",
domain_type_column = "domain_type",
domain_color = domain_color,
PTM = TRUE,
PTM_type_column = "PTM_type",
PTM_color = PTM_color,
add_label = TRUE,
label_column = "Character",
label_value = label_value,
column_order = column_order
)
For a detailed guide on how to use PepMapViz, please refer to our vignette and docuemntation under inst/doc.
This project is licensed under the MIT License - see the LICENSE file for details.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.