The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

CRAN check status R CMD check status Coverage Status

PSCBS: Analysis of Parent-Specific DNA Copy Numbers

The PSCBS package implements the parent-specific copy-number segmentation presented in Olshen et al. (2011). Package vignette ‘Parent-specific copy-number segmentation using Paired PSCBS’ provides a detailed introduction for running PSCBS segmentation. It’s available as:

vignette("PairedPSCBS", package = "PSCBS")

Below is an excerpt of the example found in that vignette:

library(PSCBS)

## Get single-chromosome example data
data <- exampleData("paired.chr01")
str(data)
# ’data.frame’: 73346 obs. of 6 variables:
# $ chromosome: int 1 1 1 1 1 1 1 1 1 1 ...
# $ x : int 1145994 2224111 2319424 2543484 2926730 2941694 3084986 3155127..
# $ CT : num 1.625 1.071 1.406 1.18 0.856 ...
# $ betaT : num 0.757 0.771 0.834 0.778 0.229 ...
# $ CN : num 2.36 2.13 2.59 1.93 1.71 ...
# $ betaN : num 0.827 0.875 0.887 0.884 0.103 ...

## Drop total copy-number outliers
data <- dropSegmentationOutliers(data)

## Identify chromosome arms from data
gaps <- findLargeGaps(data, minLength = 1e+06)
knownSegments <- gapsToSegments(gaps)

## Parent-specific copy-number segmentation
fit <- segmentByPairedPSCBS(data, knownSegments = knownSegments)

## Get segments as a data.frame
segments <- getSegments(fit, simplify = TRUE)
segments
#    chromosome tcnId dhId     start       end tcnNbrOfLoci  tcnMean
# 1           1     1    1    554484  33414619         9413 1.381375
# 2           1     1    2  33414619  86993745        17433 1.378570
# 3           1     2    1  86993745  87005243            2 3.185100
# 4           1     3    1  87005243 119796080        10404 1.389763
# 5           1     3    2 119796080 119932126           72 1.470789
# 6           1     3    3 119932126 120992603          171 1.439620
# 7           1     4    1 120992604 141510002            0       NA
# 8           1     5    1 141510003 185527989        13434 2.065400
# 9           1     6    1 185527989 199122066         4018 2.707400
# 10          1     7    1 199122066 206512702         2755 2.586100
# 11          1     8    1 206512702 206521352           14 3.871900
# 12          1     9    1 206521352 247165315        15581 2.637500
#    tcnNbrOfSNPs tcnNbrOfHets dhNbrOfLoci dhMean    c1Mean    c2Mean
# 1          2765         2765        2765 0.4868 0.3544608 1.0269140
# 2          4544         4544        4544 0.5185 0.3318907 1.0466792
# 3             0            0           0     NA        NA        NA
# 4          2777         2777        2777 0.5203 0.3333347 1.0564285
# 5             8            8           8 0.0767 0.6789900 0.7917995
# 6            52           52          52 0.5123 0.3510514 1.0885688
# 7             0            0          NA     NA        NA        NA
# 8          3770         3770        3770 0.0943 0.9353164 1.1300836
# 9          1271         1271        1271 0.2563 1.0067467 1.7006533
# 10          784          784         784 0.2197 1.0089669 1.5771331
# 11            9            9           9 0.2769 1.3998854 2.4720146
# 12         4492         4492        4492 0.2290 1.0167563 1.6207438

## Plot copy-number tracks
plotTracks(fit)

Parallel processing

The package supports segmentation of the chromosomes in parallel (asynchronously) via futures by adding the following

future::plan("multisession")

to the beginning of the PSCBS script. Everything else will work the same. To reset to non-parallel processing, use future::plan("sequential").

To configure this automatically whenever the package is loaded, see future vignette ‘A Future for R: Controlling Default Future Strategy’.

References

Installation

R package PSCBS is available on CRAN and can be installed in R as:

# install.packages("BiocManager")
BiocManager::install(c("aroma.light", "DNAcopy"))

install.packages("PSCBS")

Pre-release version

To install the pre-release version that is available in Git branch develop on GitHub, use:

remotes::install_github("HenrikBengtsson/PSCBS", ref="develop")

This will install the package from source.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.