The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

PPCI: Projection Pursuit for Cluster Identification

Implements recently developed projection pursuit algorithms for finding optimal linear cluster separators. The clustering algorithms use optimal hyperplane separators based on minimum density, Pavlidis et. al (2016) <http://jmlr.org/papers/volume17/15-307/15-307.pdf>; minimum normalised cut, Hofmeyr (2017) <doi:10.1109/TPAMI.2016.2609929>; and maximum variance ratio clusterability, Hofmeyr and Pavlidis (2015) <doi:10.1109/SSCI.2015.116>.

Version: 0.1.5
Depends: R (≥ 2.10.0), rARPACK
Published: 2020-03-06
DOI: 10.32614/CRAN.package.PPCI
Author: David Hofmeyr [aut, cre] Nicos Pavlidis [aut]
Maintainer: David Hofmeyr <dhofmeyr at sun.ac.za>
License: GPL-3
NeedsCompilation: no
Citation: PPCI citation info
CRAN checks: PPCI results

Documentation:

Reference manual: PPCI.pdf

Downloads:

Package source: PPCI_0.1.5.tar.gz
Windows binaries: r-devel: PPCI_0.1.5.zip, r-release: PPCI_0.1.5.zip, r-oldrel: PPCI_0.1.5.zip
macOS binaries: r-release (arm64): PPCI_0.1.5.tgz, r-oldrel (arm64): PPCI_0.1.5.tgz, r-release (x86_64): PPCI_0.1.5.tgz, r-oldrel (x86_64): PPCI_0.1.5.tgz
Old sources: PPCI archive

Reverse dependencies:

Reverse suggests: FCPS

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PPCI to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.