The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This page serve simply to provide some benchmarks for the
POSSA::sim()
function’s internal mechanism. The rather
speedy completion of calculations with empty functions highlights that
POSSA
’s overhead is minimal, the bulk of the time consumed
in simulations is due to the user-given sampling and testing functions.
Hence, attention should be paid to minimize the execution time of these
user functions.
library('POSSA')
Some “empty” sampling and testing functions:
# minimal output
= function(sample_size) {
sampleEmpty list(
sample1 = rep(1, sample_size),
sample2_h0 = rep(1, sample_size),
sample2_h1 = rep(1, sample_size)
)
}= function(sample1, sample2_h0, sample2_h1) {
testEmpty c(
p_h0 = 0.5,
p_h1 = 0.5
)
}
# multiple (five) hypotheses
= function(sample_size) {
sampleEmptyMulti list(
sample1 = rep(1, sample_size),
sample2_h0 = rep(1, sample_size),
sample2_h1 = rep(1, sample_size),
sample3_h0 = rep(1, sample_size),
sample3_h1 = rep(1, sample_size),
sample4_h0 = rep(1, sample_size),
sample4_h1 = rep(1, sample_size),
sample5_h0 = rep(1, sample_size),
sample5_h1 = rep(1, sample_size)
)
}= function(sample1, sample2_h0, sample2_h1, sample3_h0, sample3_h1, sample4_h0, sample4_h1, sample5_h0, sample5_h1) {
testEmptyMulti c(
p_h0 = 0.5,
p_h1 = 0.5,
p_test_2_h0 = 0.5,
p_test_2_h1 = 0.5,
p_test_3_h0 = 0.5,
p_test_3_h1 = 0.5,
p_test_4_h0 = 0.5,
p_test_4_h1 = 0.5,
p_test_5_h0 = 0.5,
p_test_5_h1 = 0.5
)
}
# to check that they work correctly:
# do.call(testEmpty, sampleEmpty(100))
# do.call(testEmptyMulti, sampleEmptyMulti(100))
Now the benchmarking. (Caution: actually running all this takes a while.)
= microbenchmark::microbenchmark(
bm_results fixed_120_obs =
{sim(
fun_obs = sampleEmpty,
n_obs = 120,
fun_test = testEmpty,
n_iter = 10000,
hush = TRUE
)
},sequential_120_obs =
{sim(
fun_obs = sampleEmpty,
n_obs = c(40, 80, 120),
fun_test = testEmpty,
n_iter = 10000,
hush = TRUE
)
},sequential_1200_obs =
{sim(
fun_obs = sampleEmpty,
n_obs = c(400, 800, 1200),
fun_test = testEmpty,
n_iter = 10000,
hush = TRUE
)
},sequential_120_obs_multi =
{sim(
fun_obs = sampleEmptyMulti,
n_obs = c(40, 80, 120),
fun_test = testEmptyMulti,
n_iter = 10000,
hush = TRUE
)
},sequential_1200_obs_multi =
{sim(
fun_obs = sampleEmptyMulti,
n_obs = c(400, 800, 1200),
fun_test = testEmptyMulti,
n_iter = 10000,
hush = TRUE
)
},times = 5
)print(bm_results)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> fixed_120_obs 148.011 154.4439 172.5028 156.2547 175.3121 228.4922 5
#> sequential_120_obs 1216.329 1499.6831 1512.8659 1524.3713 1571.4734 1752.4722 5
#> sequential_1200_obs 3134.309 3218.3147 3496.8585 3685.3403 3711.9782 3734.3506 5
#> sequential_120_obs_multi 3270.239 3387.0647 3794.1274 3739.9446 3881.3312 4692.0578 5
#> sequential_1200_obs_multi 8980.836 9861.9136 10112.6613 9925.8795 10623.9350 11170.7427 5
Voila, even the extremely large-sample multiple-hypothesis sequential design takes only about 10 seconds (on my pretty much low-end PC).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.