The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The sim()
function will combine the model, the
parameters, and the regimen, and simulate out the ODE system. It will
return a data.frame
in the long format, i.e. one
observation per row, and split by compartment and individual. The
command for sim()
looks e.g. like this:
dat <- sim(
ode = model, # created using new_ode_model()
parameters = parameters, # a named list of parameter values
regimen = regimen # created using new_regimen
)
Here is a minimal example using real code:
model <- new_ode_model("pk_1cmt_iv")
parameters <- list(CL = 5, V = 50)
regimen <- new_regimen(
amt = 100,
n = 3,
interval = 12,
type = "infusion",
t_inf = 2
)
dat1 <- sim(
ode = model,
parameters = parameters,
regimen = regimen
)
head(dat1)
## id t comp y obs_type
## 1 1 0 1 0.00000 1
## 23 1 1 1 47.58129 1
## 45 1 2 1 90.63462 1
## 63 1 3 1 82.00960 1
## 65 1 4 1 74.20535 1
## 67 1 5 1 67.14378 1
By default, the observation times will include an observation every 1 hour. However, you can specify a vector of observation times to get only those observations:
dat2 <- sim(
ode = model,
parameters = parameters,
regimen = regimen,
t_obs = c(0.5, 2, 4, 8, 12, 16, 24)
)
head(dat2)
## id t comp y obs_type
## 1 1 0.5 1 24.38529 1
## 9 1 2.0 1 90.63462 1
## 11 1 4.0 1 74.20535 1
## 13 1 8.0 1 49.74134 1
## 3 1 12.0 1 33.34261 1
## 5 1 16.0 1 96.55558 1
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.