The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
There are two ways to use PCMBaseCpp:
PCMInfoCpp
as a metaI
argument of PCMLik
and/or PCMCreateLikelihood
## Loading required package: Rcpp
system.time(llR <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab))
## user system elapsed
## 0.088 0.002 0.091
system.time(llCpp <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = PCMInfoCpp))
## user system elapsed
## 0.004 0.000 0.004
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
logLikFunR <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
logLikFunCpp <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = PCMInfoCpp)
metaICpp <- PCMInfoCpp(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
logLikFunCpp2 <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp)
set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion")
randParam <- PCMParamRandomVecParams(PCMBaseTestObjects$model_MixedGaussian_ab)
system.time(llR <- logLikFunR(randParam))
## user system elapsed
## 0.069 0.000 0.069
## user system elapsed
## 0.002 0.000 0.002
## user system elapsed
## 0.002 0.000 0.002
## [1] -598.092
## attr(,"X0")
## [1] -4.689827 -2.557522 1.457067
## [1] -598.092
## attr(,"X0")
## [1] -4.689827 -2.557522 1.457067
## [1] -598.092
## attr(,"X0")
## [1] -4.689827 -2.557522 1.457067
PCMInfoCpp
as a metaI
argument of PCMLik
and PCMCreateLikelihood
This is the recommended usage in the case of multiple likelihood evaluations, e.g. during model inference:
metaIR <- PCMInfo(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
metaICpp <- PCMInfoCpp(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
system.time(llR <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaIR))
## user system elapsed
## 0.07 0.00 0.07
system.time(llCpp <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp))
## user system elapsed
## 0.002 0.000 0.001
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
logLikFunR <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaIR)
logLikFunCpp <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp)
system.time(llR <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaIR))
## user system elapsed
## 0.069 0.000 0.068
system.time(llCpp <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp))
## user system elapsed
## 0.002 0.000 0.001
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.