The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Protein complex-based group regression models for risk protein complex identification.
To install the released version from CRAN with:
install.packages("PCLassoReg")
To install the latest development version from GitHub:
::install_github("weiliu123/PCLassoReg") devtools
The package implements protein complex-based group regression models (PCLasso and PCLasso2) for risk protein complex identification. PCLasso is a prognostic model that identifies risk protein complexes associated with survival. PCLasso2 is a classification model that identifies risk protein complexes associated with classes.
library(PCLassoReg)
#################### PCLasso ####################
# load data
data(survivalData)
data(PCGroups)
<- survivalData$Exp
x <- survivalData$survData
y
# get human protein complexes
<- getPCGroups(Groups = PCGroups, Organism = "Human",
PC.Human Type = "EntrezID")
set.seed(20150122)
<- sample(nrow(x), round(nrow(x)*2/3))
idx.train <- x[idx.train,]
x.train <- y[idx.train,]
y.train <- x[-idx.train,]
x.test <- y[-idx.train,]
y.test
# fit cv.PCLasso model
<- cv.PCLasso(x = x.train, y = y.train, group = PC.Human, nfolds = 5)
cv.fit1
# predict risk scores of samples in x.test
<- predict(object = cv.fit1, x = x.test, type="link",
s lambda=cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients/risk protein complexes
<- predict(object = cv.fit1, type="groups",
sel.groups lambda = cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients/risk proteins
<- predict(object = cv.fit1, type="vars.unique",
sel.vars.unique lambda = cv.fit1$cv.fit$lambda.min)
#################### PCLasso2 ####################
# load data
data(classData)
data(PCGroups)
= classData$Exp
x = classData$Label
y
# get human protein complexes
<- getPCGroups(Groups = PCGroups, Organism = "Human",
PC.Human Type = "GeneSymbol")
set.seed(20150122)
<- sample(nrow(x), round(nrow(x)*2/3))
idx.train <- x[idx.train,]
x.train <- y[idx.train]
y.train <- x[-idx.train,]
x.test <- y[-idx.train]
y.test
# fit model
<- cv.PCLasso2(x = x.train, y = y.train, group = PC.Human,
cv.fit1 penalty = "grLasso", family = "binomial", nfolds = 5)
# predict risk scores of samples in x.test
<- predict(object = cv.fit1, x = x.test, type="class",
s lambda=cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients/risk protein complexes
<- predict(object = cv.fit1, type="groups",
sel.groups lambda = cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients/risk proteins
<- predict(object = cv.fit1, type="vars.unique",
sel.vars.unique lambda = cv.fit1$cv.fit$lambda.min)
PCLasso2: a protein complex-based, group Lasso-logistic model for risk protein complex discovery. To be published.
PCLasso: a protein complex-based, group lasso-Cox model for accurate prognosis and risk protein complex discovery. Brief Bioinform, 2021.
Park, H., Niida, A., Miyano, S. and Imoto, S. (2015) Sparse overlapping group lasso for integrative multi-omics analysis. Journal of computational biology: a journal of computational molecular cell biology, 22, 73-84.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.