The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The R package OpenML is an interface to make interactions with the OpenML server as comfortable as possible. For example, the users can download and upload files, run their implementations on specific tasks and get predictions in the correct form directly via R commands. In this tutorial, we will show the most important functions of this package and give examples on standard workflows.
For general information on what OpenML is, please have a look at the README file or visit the official OpenML website.
After installation and before making practical use of the package, in most cases it is desirable to setup a configuration file to simplify further steps. Afterwards, there are different basic stages when using this package or OpenML, respectively:
DataSets
, Tasks
, Flows
,
Runs
, RunEvaluations
,
EvaluationMeasures
, and TaskTypes
)listOML
data.frame
DataSets
,
Tasks
, Runs
, Predictions
, and
Flows
)getOML
runTaskMlr
OMLTask
and Learner
OMLMlrRun
, OMLRun
uploadOMLRun
Installation works as in any other package using
install.packages("OpenML")
To install the current development version use the devtools
package and run
devtools::install_github("openml/openml-r")
Using the OpenML package also requires a reader for the ARFF file format. By default farff is used. Alternatively, the RWeka package can be used. You can install the packages with the following calls.
install.packages(c("farff", "RWeka"))
All examples in this tutorial are given with a READ-ONLY API key.
With this key you can read all the information from the server but not write data sets, tasks, flows, and runs to the server. This key allows to emulate uploading to the server but doesn’t allow to really store data. If one wants to write data to a server, one has to get a personal API key. The process of how to obtain a key is shown in the configuration section.
Important: Please do not write meaningless data to the server such as copies of already existing data sets, tasks, or runs (such as the ones from this tutorial)! One instance of the Iris data set should be enough for everyone. :D
In this paragraph you can find an example on how to download a task from the server, print some information about it to the console, and produce a run which is then uploaded to the server. For detailed information on OpenML terminology (task, run, etc.) see the OpenML guide.
library("OpenML")
## temporarily set API key to read only key
setOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f")
## OpenML configuration:
## server : https://www.openml.org/api/v1
## cachedir : C:\Users\GDaddy\AppData\Local\Temp\RtmpUzg5GZ/working_dir\RtmpMfS7jw/cache
## verbosity : 0
## arff.reader : farff
## confirm.upload : TRUE
## apikey : ***************************47f1f
# download a task (whose ID is 1L)
task = getOMLTask(task.id = 1L)
## Warning in getOMLDataSetById(data.id = data.id, cache.only = cache.only, : Data set has been deactivated.
task
##
## OpenML Task 1 :: (Data ID = 1)
## Task Type : Supervised Classification
## Data Set : anneal :: (Version = 2, OpenML ID = 1)
## Target Feature(s) : class
## Tags : basic, study_1, study_41, study_7, study_73, study_89, test-tagging, testtag,...
## Estimation Procedure : Stratified crossvalidation (1 x 10 folds)
## Evaluation Measure(s): predictive_accuracy
The task contains information on the following:
In the next line, randomForest
is used as a classifier
and run with the help of the mlr package
. Note
that one needs to run the algorithm locally and that mlr
will automatically load the package that is needed to run the specified
classifier.
# define the classifier (usually called "flow" within OpenML)
library("mlr")
lrn = makeLearner("classif.randomForest")
# upload the new flow (with information about the algorithm and settings);
# if this algorithm already exists on the server, one will receive a message
# with the ID of the existing flow
flow.id = uploadOMLFlow(lrn)
# the last step is to perform a run and upload the results
run.mlr = runTaskMlr(task, lrn)
run.id = uploadOMLRun(run.mlr)
Following this very brief example, we will explain the single steps of the OpenML package in more detail in the next sections.
Interacting with the OpenML server requires an API key. For
demonstration purposes, we have created a public read-only
API key ("c1994bdb7ecb3c6f3c8f3b35f4b47f1f"
), which
will be used in this tutorial to make the examples executable. However,
for a full-fledged usage of the OpenML
package, you need
your personal API.
In order to receive your own API key
You can set your own OpenML configuration either just temporarily for
the current R session via setOMLConfig
or permanently via
saveOMLConfig
. In order to create a permanent configuration
file using default values and at the same time setting your personal API
key, run
saveOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f")
where "c1994bdb7ecb3c6f3c8f3b35f4b47f1f"
should be
replaced with your personal API
key. It is noteworthy that basically everybody who has access
to your computer can read the configuration file and thus see your API
key. With your API key other users have full access to your account via
the API, so please handle it with care!
It is also possible to manually create a file
~/.openml/config
in your home directory – you can use the R
command path.expand("~/.openml/config")
to get the full
path to the configuration file on the operating system. The
config
file consists of key = value
pairs,
note that the values are not quoted. An exemplary minimal
config
file might look as follows:
apikey=c1994bdb7ecb3c6f3c8f3b35f4b47f1f
The config
file may contain the following
information:
server
:
https://www.openml.org/api/v1
cachedir
:
file.path(tempdir(), "cache")
.verbosity
:
0
: normal output1
: info output (default)2
: debug outputarff.reader
:
RWeka
: this is the standard Java parser used in
Wekafarff
: the farff package provides a
newer, faster parser without any Java requirementsconfirm.upload
:
FALSE
) one does not need to confirm the
upload decisionapikey
:
If you manually modify the config
file, you need to
reload the modified config
file to the current R session
using loadOMLConfig()
. You can query the current
configuration using
getOMLConfig()
## OpenML configuration:
## server : https://www.openml.org/api/v1
## cachedir : C:\Users\GDaddy\AppData\Local\Temp\RtmpUzg5GZ/working_dir\RtmpMfS7jw/cache
## verbosity : 0
## arff.reader : farff
## confirm.upload : TRUE
## apikey : ***************************47f1f
The configuration file and some related things are also explained in the OpenML Wiki.
Once the config file is set up, you are ready to go!
In this stage, we want to list basic information about the various OpenML objects:
For each of these objects, we have a function to query the
information, beginning with listOML
. All of these functions
return a data.frame
, even in case the result consists of a
single column or has zero observations (i.e., rows).
Note that the listOML*
functions only list information
on the corresponding objects – they do not download the respective
objects. Information on actually downloading specific objects is covered
in the next section.
To browse the OpenML data base for appropriate data sets, you can use
listOMLDataSets()
in order to get basic data
characteristics (number of features, instances, classes, missing values,
etc.) for each data set. By default, listOMLDataSets()
returns only data sets that have an active status on OpenML:
datasets = listOMLDataSets() # returns active data sets
The resulting data.frame
contains the following
information for each of the listed data sets:
data.id
status
("active"
,
"in_preparation"
or "deactivated"
) of the data
setname
of the data setmajority.class.size
)str(datasets)
## 'data.frame': 4390 obs. of 16 variables:
## $ data.id : int 2 3 4 5 6 7 8 9 10 11 ...
## $ name : chr "anneal" "kr-vs-kp" "labor" "arrhythmia" ...
## $ version : int 1 1 1 1 1 1 1 1 1 1 ...
## $ status : chr "active" "active" "active" "active" ...
## $ format : chr "ARFF" "ARFF" "ARFF" "ARFF" ...
## $ tags : chr "" "" "" "" ...
## $ majority.class.size : int 684 1669 37 245 813 57 NA 67 81 288 ...
## $ max.nominal.att.distinct.values : int 7 3 3 13 26 24 NA 22 8 3 ...
## $ minority.class.size : int 8 1527 20 2 734 1 NA 3 2 49 ...
## $ number.of.classes : int 5 2 2 13 26 24 0 6 4 3 ...
## $ number.of.features : int 39 37 17 280 17 70 6 26 19 5 ...
## $ number.of.instances : int 898 3196 57 452 20000 226 345 205 148 625 ...
## $ number.of.instances.with.missing.values: int 898 0 56 384 0 222 0 46 0 0 ...
## $ number.of.missing.values : int 22175 0 326 408 0 317 0 59 0 0 ...
## $ number.of.numeric.features : int 6 0 8 206 16 0 6 15 3 4 ...
## $ number.of.symbolic.features : int 33 37 9 74 1 70 0 11 16 1 ...
head(datasets[, 1:5])
## data.id name version status format
## 1 2 anneal 1 active ARFF
## 2 3 kr-vs-kp 1 active ARFF
## 3 4 labor 1 active ARFF
## 4 5 arrhythmia 1 active ARFF
## 5 6 letter 1 active ARFF
## 6 7 audiology 1 active ARFF
To find a specific data set, you can now query the resulting
datasets
object. Suppose we want to find the
iris
data set.
subset(datasets, name == "iris")
## data.id name version status format tags majority.class.size max.nominal.att.distinct.values
## 53 61 iris 1 active ARFF 50 3
## 812 969 iris 3 active ARFF 100 2
## 2602 41510 iris 9 active ARFF NA 3
## 2603 41511 iris 10 active ARFF 50 3
## 2636 41567 iris 11 active ARFF NA 3
## 2637 41568 iris 12 active ARFF 50 3
## 2638 41582 iris 13 active ARFF NA 3
## 2639 41583 iris 14 active ARFF 50 3
## 2889 41996 iris 15 active ARFF NA 3
## 2890 41997 iris 16 active ARFF 50 3
## 2892 42002 iris 17 active ARFF NA 3
## 2893 42003 iris 18 active ARFF 50 3
## 2896 42010 iris 19 active ARFF NA 3
## 2897 42011 iris 20 active ARFF 50 3
## 2898 42015 iris 21 active ARFF NA 3
## 2899 42016 iris 22 active ARFF 50 3
## 2900 42020 iris 23 active ARFF NA 3
## 2901 42021 iris 24 active ARFF 50 3
## 2902 42025 iris 25 active ARFF NA 3
## 2903 42026 iris 26 active ARFF 50 3
## 2904 42030 iris 27 active ARFF NA 3
## 2905 42031 iris 28 active ARFF 50 3
## 2906 42035 iris 29 active ARFF NA 3
## 2907 42036 iris 30 active ARFF 50 3
## 2908 42040 iris 31 active ARFF NA 3
## 2909 42041 iris 32 active ARFF 50 3
## 2910 42045 iris 33 active ARFF NA 3
## 2911 42046 iris 34 active ARFF 50 3
## 2912 42050 iris 35 active ARFF NA 3
## 2913 42051 iris 36 active ARFF 50 3
## 2914 42055 iris 37 active ARFF NA 3
## 2915 42056 iris 38 active ARFF 50 3
## 2920 42065 iris 39 active ARFF NA 3
## 2921 42066 iris 40 active ARFF 50 3
## 2922 42070 iris 41 active ARFF NA 3
## 2923 42071 iris 42 active ARFF 50 3
## 2934 42091 iris 43 active ARFF NA 3
## 2937 42097 iris 44 active ARFF NA 3
## 2938 42098 iris 45 active ARFF 50 3
## 3190 42661 iris 46 active arff NA NA
## 3206 42699 iris 47 active ARFF NA NA
## 3207 42700 iris 48 active ARFF 50 NA
## 3292 42851 iris 49 active ARFF NA NA
## 3309 42871 iris 50 active ARFF NA NA
## minority.class.size number.of.classes number.of.features number.of.instances
## 53 50 3 5 150
## 812 50 2 5 150
## 2602 NA NA 5 150
## 2603 50 3 5 150
## 2636 NA NA 5 150
## 2637 50 3 5 150
## 2638 NA NA 5 150
## 2639 50 3 5 150
## 2889 NA NA 5 150
## 2890 50 3 5 150
## 2892 NA NA 5 150
## 2893 50 3 5 150
## 2896 NA NA 5 150
## 2897 50 3 5 150
## 2898 NA NA 5 150
## 2899 50 3 5 150
## 2900 NA NA 5 150
## 2901 50 3 5 150
## 2902 NA NA 5 150
## 2903 50 3 5 150
## 2904 NA NA 5 150
## 2905 50 3 5 150
## 2906 NA NA 5 150
## 2907 50 3 5 150
## 2908 NA NA 5 150
## 2909 50 3 5 150
## 2910 NA NA 5 150
## 2911 50 3 5 150
## 2912 NA NA 5 150
## 2913 50 3 5 150
## 2914 NA NA 5 150
## 2915 50 3 5 150
## 2920 NA NA 5 150
## 2921 50 3 5 150
## 2922 NA NA 5 150
## 2923 50 3 5 150
## 2934 NA NA 5 150
## 2937 NA NA 5 150
## 2938 50 3 5 150
## 3190 NA NA 5 150
## 3206 NA NA 5 150
## 3207 50 3 5 150
## 3292 NA NA 7 150
## 3309 NA NA 7 150
## number.of.instances.with.missing.values number.of.missing.values number.of.numeric.features
## 53 0 0 4
## 812 0 0 4
## 2602 0 0 4
## 2603 0 0 4
## 2636 0 0 4
## 2637 0 0 4
## 2638 0 0 4
## 2639 0 0 4
## 2889 0 0 4
## 2890 0 0 4
## 2892 0 0 4
## 2893 0 0 4
## 2896 0 0 4
## 2897 0 0 4
## 2898 0 0 4
## 2899 0 0 4
## 2900 0 0 4
## 2901 0 0 4
## 2902 0 0 4
## 2903 0 0 4
## 2904 0 0 4
## 2905 0 0 4
## 2906 0 0 4
## 2907 0 0 4
## 2908 0 0 4
## 2909 0 0 4
## 2910 0 0 4
## 2911 0 0 4
## 2912 0 0 4
## 2913 0 0 4
## 2914 0 0 4
## 2915 0 0 4
## 2920 0 0 4
## 2921 0 0 4
## 2922 0 0 4
## 2923 0 0 4
## 2934 0 0 4
## 2937 0 0 4
## 2938 0 0 4
## 3190 0 0 4
## 3206 0 0 4
## 3207 0 0 4
## 3292 0 0 4
## 3309 0 0 4
## number.of.symbolic.features
## 53 1
## 812 1
## 2602 1
## 2603 1
## 2636 1
## 2637 1
## 2638 1
## 2639 1
## 2889 1
## 2890 1
## 2892 1
## 2893 1
## 2896 1
## 2897 1
## 2898 1
## 2899 1
## 2900 1
## 2901 1
## 2902 1
## 2903 1
## 2904 1
## 2905 1
## 2906 1
## 2907 1
## 2908 1
## 2909 1
## 2910 1
## 2911 1
## 2912 1
## 2913 1
## 2914 1
## 2915 1
## 2920 1
## 2921 1
## 2922 1
## 2923 1
## 2934 1
## 2937 1
## 2938 1
## 3190 0
## 3206 1
## 3207 1
## 3292 3
## 3309 3
As you can see, there are two data sets called iris
. We
want to use the original data set with three classes, which is
stored under the data set ID (data.id
) 61, 41511, 41568,
41583, 41997, 42003, 42011, 42016, 42021, 42026, 42031, 42036, 42041,
42046, 42051, 42056, 42066, 42071, 42098, 42700. You can also have a
closer look at the data set on the corresponding OpenML web page (https://www.openml.org/d/61, 41511, 41568, 41583, 41997,
42003, 42011, 42016, 42021, 42026, 42031, 42036, 42041, 42046, 42051,
42056, 42066, 42071, 42098, 42700).
Each OpenML task is a bundle that encapsulates information on various objects:
"Supervised Classification"
or
"Supervised Regression"
"predictive accuracy"
for a classification taskListing the tasks can be done via
tasks = listOMLTasks()
The resulting data.frame
contains for each of the listed
tasks information on:
task.id
task.type
target.feature
tags
which can be used for labelling the taskestimation.procedure
(aka resampling strategy)evaluation.measures
used for measuring the
performance of the learner / flow on the taskstr(tasks)
## 'data.frame': 5000 obs. of 25 variables:
## $ task.id : int 2 3 4 5 6 7 8 9 10 11 ...
## $ task.type : chr "Supervised Classification" "Supervised Classification" "Supervised Classification" "Supervised Classification" ...
## $ data.id : int 2 3 4 5 6 7 8 9 10 11 ...
## $ name : chr "anneal" "kr-vs-kp" "labor" "arrhythmia" ...
## $ status : chr "active" "active" "active" "active" ...
## $ format : chr "ARFF" "ARFF" "ARFF" "ARFF" ...
## $ estimation.procedure : chr "10-fold Crossvalidation" "10-fold Crossvalidation" "10-fold Crossvalidation" "10-fold Crossvalidation" ...
## $ evaluation.measures : chr "predictive_accuracy" NA "predictive_accuracy" "predictive_accuracy" ...
## $ target.feature : chr "class" "class" "class" "class" ...
## $ cost.matrix : chr NA NA NA NA ...
## $ source.data.labeled : chr NA NA NA NA ...
## $ target.feature.event : chr NA NA NA NA ...
## $ target.feature.left : chr NA NA NA NA ...
## $ target.feature.right : chr NA NA NA NA ...
## $ quality.measure : chr NA NA NA NA ...
## $ majority.class.size : int 684 1669 37 245 813 57 NA 67 81 288 ...
## $ max.nominal.att.distinct.values : int 7 3 3 13 26 24 NA 22 8 3 ...
## $ minority.class.size : int 8 1527 20 2 734 1 NA 3 2 49 ...
## $ number.of.classes : int 5 2 2 13 26 24 0 6 4 3 ...
## $ number.of.features : int 39 37 17 280 17 70 6 26 19 5 ...
## $ number.of.instances : int 898 3196 57 452 20000 226 345 205 148 625 ...
## $ number.of.instances.with.missing.values: int 898 0 56 384 0 222 0 46 0 0 ...
## $ number.of.missing.values : int 22175 0 326 408 0 317 0 59 0 0 ...
## $ number.of.numeric.features : int 6 0 8 206 16 0 6 15 3 4 ...
## $ number.of.symbolic.features : int 33 37 9 74 1 70 0 11 16 1 ...
For some data sets, there may be more than one task available on the
OpenML server. For example, one can look for
"Supervised Classification"
tasks that are available for
data set 61 via
head(subset(tasks, task.type == "Supervised Classification" & data.id == 61L)[, 1:5])
## task.id task.type data.id name status
## 51 59 Supervised Classification 61 iris active
## 263 289 Supervised Classification 61 iris active
## 428 1823 Supervised Classification 61 iris active
## 535 1939 Supervised Classification 61 iris active
## 580 1992 Supervised Classification 61 iris active
## 3300 7306 Supervised Classification 61 iris active
A flow is the definition and implementation of a specific algorithm workflow or script, i.e., a flow is essentially the code / implementation of the algorithm.
flows = listOMLFlows()
str(flows)
## 'data.frame': 16365 obs. of 6 variables:
## $ flow.id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ full.name : chr "openml.evaluation.EuclideanDistance(1.0)" "openml.evaluation.PolynomialKernel(1.0)" "openml.evaluation.RBFKernel(1.0)" "openml.evaluation.area_under_roc_curve(1.0)" ...
## $ name : chr "openml.evaluation.EuclideanDistance" "openml.evaluation.PolynomialKernel" "openml.evaluation.RBFKernel" "openml.evaluation.area_under_roc_curve" ...
## $ version : int 1 1 1 1 1 1 1 1 1 1 ...
## $ external.version: chr "" "" "" "" ...
## $ uploader : int 1 1 1 1 1 1 1 1 1 1 ...
flows[56:63, 1:4]
## flow.id full.name name version
## 56 56 weka.ZeroR(1) weka.ZeroR 1
## 57 57 weka.OneR(1) weka.OneR 1
## 58 58 weka.NaiveBayes(1) weka.NaiveBayes 1
## 59 59 weka.JRip(1) weka.JRip 1
## 60 60 weka.J48(1) weka.J48 1
## 61 61 weka.REPTree(1) weka.REPTree 1
## 62 62 weka.DecisionStump(1) weka.DecisionStump 1
## 63 63 weka.HoeffdingTree(1) weka.HoeffdingTree 1
A run is an experiment, which is executed on a given combination of
task, flow and setup (i.e., the explicit parameter configuration of a
flow). The corresponding results are stored as a run result. Both
objects, i.e., runs and run results, can be listed via
listOMLRuns
or listOMLRunEvaluations
,
respectively. As each of those objects is defined with a task, setup and
flow, you can extract runs and run results with specific combinations of
task.id
, setup.id
and/or flow.id
.
For instance, listing all runs for task 59 (supervised
classification on iris) can be done with
runs = listOMLRuns(task.id = 59L) # must be specified with the task, setup and/or implementation ID
head(runs)
## run.id task.id setup.id flow.id uploader error.message
## 1 81 59 12 67 1 <NA>
## 2 161 59 13 70 1 <NA>
## 3 234 59 1 56 1 <NA>
## 4 447 59 6 61 1 <NA>
## 5 473 59 18 77 1 <NA>
## 6 491 59 7 62 1 <NA>
# one of the IDs (here: task.id) must be supplied
run.results = listOMLRunEvaluations(task.id = 59L)
str(run.results)
## 'data.frame': 4283 obs. of 35 variables:
## $ run.id : int 81 161 234 447 473 491 550 6088 6157 6158 ...
## $ task.id : int 59 59 59 59 59 59 59 59 59 59 ...
## $ setup.id : int 12 13 1 6 18 7 16 11 12 3 ...
## $ flow.id : int 67 70 56 61 77 62 75 66 67 58 ...
## $ flow.name : chr "weka.BayesNet_K2(1)" "weka.SMO_PolyKernel(1)" "weka.ZeroR(1)" "weka.REPTree(1)" ...
## $ flow.version : chr "1" "1" "1" "1" ...
## $ flow.source : chr "weka" "weka" "weka" "weka" ...
## $ learner.name : chr "BayesNet_K2" "SMO_PolyKernel" "ZeroR" "REPTree" ...
## $ data.name : chr "iris" "iris" "iris" "iris" ...
## $ upload.time : chr "2014-04-07 00:05:11" "2014-04-07 00:55:32" "2014-04-07 01:33:24" "2014-04-07 06:26:27" ...
## $ area.under.roc.curve : num 0.983 0.977 0.5 0.967 0.978 ...
## $ average.cost : num 0 0 0 0 0 0 0 0 0 0 ...
## $ build.cpu.time : num NA NA NA NA NA NA NA NA NA NA ...
## $ build.memory : num NA NA NA NA NA NA NA NA NA NA ...
## $ f.measure : num 0.94 0.96 0.167 0.927 0.947 ...
## $ kappa : num 0.91 0.94 0 0.89 0.92 0.5 0.95 0.93 0.91 0.93 ...
## $ kb.relative.information.score: num 1.39e+02 9.09e+01 -6.80e-05 1.31e+02 1.38e+02 ...
## $ mean.absolute.error : num 0.0384 0.2311 0.4444 0.0671 0.0392 ...
## $ mean.prior.absolute.error : num 0.444 0.444 0.444 0.444 0.444 ...
## $ number.of.instances : num 150 150 150 150 150 150 150 150 150 150 ...
## $ precision : num 0.94 0.96 0.111 0.927 0.947 ...
## $ predictive.accuracy : num 0.94 0.96 0.333 0.927 0.947 ...
## $ prior.entropy : num 1.58 1.58 1.58 1.58 1.58 ...
## $ recall : num 0.94 0.96 0.333 0.927 0.947 ...
## $ relative.absolute.error : num 0.0863 0.52 1 0.151 0.0881 ...
## $ root.mean.prior.squared.error: num 0.471 0.471 0.471 0.471 0.471 ...
## $ root.mean.squared.error : num 0.16 0.288 0.471 0.211 0.178 ...
## $ root.relative.squared.error : num 0.339 0.611 1 0.447 0.377 ...
## $ scimark.benchmark : num 1981 1980 2011 1887 1998 ...
## $ total.cost : num 0 0 0 0 0 0 0 0 0 0 ...
## $ unweighted.recall : num NA NA NA NA NA NA NA NA NA NA ...
## $ usercpu.time.millis : num NA NA NA NA NA NA NA NA NA NA ...
## $ usercpu.time.millis.testing : num NA NA NA NA NA NA NA NA NA NA ...
## $ usercpu.time.millis.training : num NA NA NA NA NA NA NA NA NA NA ...
## $ weighted.recall : num NA NA NA NA NA NA NA NA NA NA ...
Analogously to the previous listings, one can list further objects simply by calling the respective functions.
listOMLDataSetQualities()
listOMLEstimationProcedures()
listOMLEvaluationMeasures()
listOMLTaskTypes()
Users can download data sets, tasks, flows and runs from the OpenML server. The package provides special representations for each object, which will be discussed here.
To directly download a data set, e.g., when you want to run a few
preliminary experiments, one can use the function
getOMLDataSet
. The function accepts a data set ID as input
and returns the corresponding OMLDataSet
:
iris.data = getOMLDataSet(data.id = 61L) # the iris data set has the data set ID 61
The following call returns an OpenML task object for a supervised classification task on the iris data:
task = getOMLTask(task.id = 59L)
task
##
## OpenML Task 59 :: (Data ID = 61)
## Task Type : Supervised Classification
## Data Set : iris :: (Version = 1, OpenML ID = 61)
## Target Feature(s) : class
## Tags : basic, study_1, study_41, study_50, study_7, study_89, testsuite, under100k, ...
## Estimation Procedure : Stratified crossvalidation (1 x 10 folds)
## Evaluation Measure(s): predictive_accuracy
The corresponding "OMLDataSet"
object can be accessed
by
task$input$data.set
##
## Data Set 'iris' :: (Version = 1, OpenML ID = 61)
## Collection Date : 1936
## Creator(s) : R.A. Fisher
## Default Target Attribute: class
and the class of the task can be shown with the next line
task$task.type
## [1] "Supervised Classification"
Also, it is possible to extract the data set itself via
iris.data = task$input$data.set$data
head(iris.data)
## sepallength sepalwidth petallength petalwidth class
## 0 5.1 3.5 1.4 0.2 Iris-setosa
## 1 4.9 3.0 1.4 0.2 Iris-setosa
## 2 4.7 3.2 1.3 0.2 Iris-setosa
## 3 4.6 3.1 1.5 0.2 Iris-setosa
## 4 5.0 3.6 1.4 0.2 Iris-setosa
## 5 5.4 3.9 1.7 0.4 Iris-setosa
Aside from tasks and data sets, one can also download flows – by
calling getOMLFlow
with the specific
flow.id
flow = getOMLFlow(flow.id = 2700L)
flow
##
## Flow 'classif.randomForest' :: (Version = 47, Flow ID = 2700)
## External Version : R_3.1.2-734b029d
## Dependencies : mlr_2.9, randomForest_4.6.12
## Number of Flow Parameters: 16
## Number of Flow Components: 0
To download the results of one run, including all server and user
computed metrics, you have to define the corresponding run ID. For all
runs that are actually related to the task, the corresponding ID can be
extracted from the runs
object, which was created in the
previous section. Here we use a run of task 59, which has the
run.id
525534. Single OpenML runs can be downloaded with
the function getOMLRun
:
task.list = listOMLRuns(task.id = 59L)
task.list[281:285, ]
## run.id task.id setup.id flow.id uploader error.message
## 281 7244063 59 5275959 6952 1 <NA>
## 282 7245683 59 5277579 6952 1 <NA>
## 283 7245684 59 5277580 6952 1 <NA>
## 284 7245686 59 5277582 6952 1 <NA>
## 285 7245687 59 5277583 6952 1 <NA>
run = getOMLRun(run.id = 524027L)
run
##
## OpenML Run 524027 :: (Task ID = 59, Flow ID = 2393)
## User ID : 970
## Learner : classif.randomForest(43)
## Task type: Supervised Classification
Each OMLRun
object is a list object, which stores
additional information on the run. For instance, the flow of the
previously downloaded run has some non-default settings for
hyperparameters, which can be obtained by:
run$parameter.setting # retrieve the list of parameter settings
## $seed
## (parameter of component 2393) seed = 1
##
## $kind
## (parameter of component 2393) kind = Mersenne-Twister
##
## $normal.kind
## (parameter of component 2393) normal.kind = Inversion
If the underlying flow has hyperparameters that are different from the default values of the corresponding learner, they are also shown, otherwise the default hyperparameters are used (but not explicitly listed).
All the data that served as input for the run, including data set IDs
and the URL to the data, is stored in input.data
:
run$input.data
##
## ** Data Sets **
## data.id name url
## 1 61 iris https://www.openml.org/data/download/61/dataset_61_iris.arff
##
## ** Files **
## Dataframe mit 0 Spalten und 0 Zeilen
##
## ** Evaluations **
## Dataframe mit 0 Spalten und 0 Zeilen
Predictions made by an uploaded run are stored within the
predictions
element and can be retrieved via
head(run$predictions, 10)
## repeat fold row_id prediction truth confidence.Iris-setosa confidence.Iris-versicolor
## 1 0 0 43 Iris-setosa Iris-setosa 1 0
## 2 0 0 14 Iris-setosa Iris-setosa 1 0
## 3 0 0 37 Iris-setosa Iris-setosa 1 0
## 4 0 0 23 Iris-setosa Iris-setosa 1 0
## 5 0 0 10 Iris-setosa Iris-setosa 1 0
## 6 0 0 99 Iris-versicolor Iris-versicolor 0 1
## 7 0 0 87 Iris-versicolor Iris-versicolor 0 1
## 8 0 0 97 Iris-versicolor Iris-versicolor 0 1
## 9 0 0 62 Iris-versicolor Iris-versicolor 0 1
## 10 0 0 92 Iris-versicolor Iris-versicolor 0 1
## confidence.Iris-virginica
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## 7 0
## 8 0
## 9 0
## 10 0
The output above shows predictions, ground truth information about classes and task-specific information, e.g., about the confidence of a classifier (for every observation) or in which fold a data point has been placed.
The modularized structure of OpenML allows to apply the implementation of an algorithm to a specific task and there exist multiple possibilities to do this.
If one is working with mlr, one can
specify an RLearner
object and use the function
runTaskMlr
to create the desired "OMLMlrRun"
object. The task
is created the same way as in the previous
sections:
task = getOMLTask(task.id = 59L)
library("mlr")
lrn = makeLearner("classif.rpart")
run.mlr = runTaskMlr(task, lrn)
run.mlr
## $run
##
## OpenML Run NA :: (Task ID = 59, Flow ID = NA)
##
## $bmr
## task.id learner.id acc.test.join timetrain.test.sum timepredict.test.sum
## 1 iris classif.rpart 0.94 0.01 0.03
##
## $flow
##
## Flow 'mlr.classif.rpart' :: (Version = NA, Flow ID = NA)
## External Version : R_4.2.1-v2.4b8be4e0
## Dependencies : R_4.2.1, OpenML_1.12, mlr_2.19.0, rpart_4.1.16
## Number of Flow Parameters: 14
## Number of Flow Components: 0
##
## attr(,"class")
## [1] "OMLMlrRun"
Note that locally created runs don’t have a run ID or flow ID yet. These are assigned by the OpenML server after uploading the run.
If you are not using mlr
, you will have to invest some
more time and effort to get things done since this is not supported yet.
So, unless you have good reasons to do otherwise, we strongly encourage
to use mlr
. If the algorithm you want to use is not
integrated in mlr
yet, you can integrate it yourself (see
the tutorial)
or open an issue on mlr
GitHub repository and hope someone else will do it for you.
The following section gives an overview on how one can contribute building blocks (i.e. data sets, flows and runs) to the OpenML server.
A data set contains information that can be stored on OpenML and used by OpenML tasks and runs. This example shows how a very simple data set can be taken from R, converted to an OpenML data set and afterwards uploaded to the server. The corresponding workflow consists of the following three steps:
makeOMLDataSetDescription
: create the description
object of an OpenML data setmakeOMLDataSet
: convert the data set into an OpenML
data setuploadOMLDataSet
: upload the data set to the
serverdata("airquality")
dsc = "Daily air quality measurements in New York, May to September 1973.
This data is taken from R."
cit = "Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983)
Graphical Methods for Data Analysis. Belmont, CA: Wadsworth."
## (1) Create the description object
desc = makeOMLDataSetDescription(name = "airquality",
description = dsc,
creator = "New York State Department of Conservation (ozone data) and the National
Weather Service (meteorological data)",
collection.date = "May 1, 1973 to September 30, 1973",
language = "English",
licence = "GPL-2",
url = "https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html",
default.target.attribute = "Ozone",
citation = cit,
tags = "R")
## (2) Create the OpenML data set
air.data = makeOMLDataSet(desc = desc,
data = airquality,
colnames.old = colnames(airquality),
colnames.new = colnames(airquality),
target.features = "Ozone")
## (3) Upload the OpenML data set to the server
## Because this is a simple data set which is generally already available in R
## please do not actually upload it to the server!
## The code would be:
#dataset.id = uploadOMLDataSet(air.data)
#dataset.id
Alternatively you can enter data directly on the OpenML website.
A flow is an implementation of a single
algorithm or a script. Each mlr
learner can be considered an implementation of a flow, which can be
uploaded to the server with the function uploadOMLFlow
. If
the flow has already been uploaded to the server (either by you or
someone else), one receives a message that the flow already exists and
the flow.id
is returned from the function. Otherwise, the
flow will be uploaded, receive its own flow.id
and return
that ID.
library("mlr")
lrn = makeLearner("classif.randomForest")
flow.id = uploadOMLFlow(lrn)
flow.id
In addition to uploading data sets or flows, one can also upload runs
(which a priori have to be created, e.g., using mlr
):
## choose 2 flows (i.e., mlr-learners)
learners = list(
makeLearner("classif.kknn"),
makeLearner("classif.randomForest")
)
## pick 3 random tasks
task.ids = c(57, 59, 2382)
for (lrn in learners) {
for (id in task.ids) {
task = getOMLTask(id)
res = runTaskMlr(task, lrn)$run
run.id = uploadOMLRun(res) # upload results
}
}
Before your run will be uploaded to the server,
uploadOMLRun
checks whether the flow that created this run
is already available on the server. If the flow does not exist on the
server, it will (automatically) be uploaded as well.
Now, you should have gotten an idea on how to use our package. However, as there is always room for improvement, we are more than happy to receive your feedback. So, in case
please open an issue in the issue tracker of our GitHub repository.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.