The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Comparison of conditional F-statistics

library(haven)
library(ivreg)
library(lfe)
#> Loading required package: Matrix
library(OneSampleMR)

Run fsw() on ivreg() model object

url <- "http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.dta"
dat <- haven::read_dta(url)
mod <- ivreg(lwage ~ educ + exper | age + kidslt6 + kidsge6, data = dat)
summary(mod)
#> 
#> Call:
#> ivreg(formula = lwage ~ educ + exper | age + kidslt6 + kidsge6, 
#>     data = dat)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -3.04973 -0.30711  0.05531  0.38952  2.27672 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)  
#> (Intercept) -0.360182   1.033416  -0.349    0.728  
#> educ         0.105836   0.080982   1.307    0.192  
#> exper        0.016153   0.007595   2.127    0.034 *
#> 
#> Diagnostic tests:
#>                          df1 df2 statistic p-value    
#> Weak instruments (educ)    3 424     4.466 0.00421 ** 
#> Weak instruments (exper)   3 424    55.044 < 2e-16 ***
#> Wu-Hausman                 2 423     0.004 0.99609    
#> Sargan                     1  NA     1.168 0.27976    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.669 on 425 degrees of freedom
#> Multiple R-Squared: 0.1482,  Adjusted R-squared: 0.1442 
#> Wald test: 3.034 on 2 and 425 DF,  p-value: 0.04917
fsw(mod)
#> 
#> Model sample size:  428 
#> 
#> Sanderson-Windmeijer conditional F-statistics for first stage model:
#>        F value d.f. Residual d.f.   Pr(>F)    
#> educ   6.69425    2           424 0.001373 ** 
#> exper 81.81237    2           424  < 2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparison with F-statistic from lfe package

modst2 <- felm(lwage ~ 1 | 0 | (educ | exper ~ age + kidslt6 + kidsge6),
                 data = dat)
summary(modst2)
#> 
#> Call:
#>    felm(formula = lwage ~ 1 | 0 | (educ | exper ~ age + kidslt6 +      kidsge6), data = dat) 
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -3.04973 -0.30711  0.05531  0.38952  2.27672 
#> 
#> Coefficients:
#>               Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)  -0.360182   1.033416  -0.349    0.728  
#> `educ(fit)`   0.105836   0.080982   1.307    0.192  
#> `exper(fit)`  0.016153   0.007595   2.127    0.034 *
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.669 on 425 degrees of freedom
#>   (325 observations deleted due to missingness)
#> Multiple R-squared(full model): 0.1482   Adjusted R-squared: 0.1442 
#> Multiple R-squared(proj model): 0.1482   Adjusted R-squared: 0.1442 
#> F-statistic(full model):3.034 on 2 and 425 DF, p-value: 0.04917 
#> F-statistic(proj model): 3.034 on 2 and 425 DF, p-value: 0.04917 
#> F-statistic(endog. vars):3.034 on 2 and 425 DF, p-value: 0.04917
t(sapply(modst2$stage1$lhs, 
         function(lh) waldtest(modst2$stage1, 
                               ~ age | kidslt6 | kidsge6, lhs = lh)))
#>                  p      chi2 df1          p.F         F df2
#> educ  3.849465e-03  13.39851   3 4.210326e-03  4.466172 424
#> exper 1.429780e-35 165.13309   3 4.561549e-30 55.044363 424
condfstat(modst2, quantiles = c(0.025, 0.975))
#>           educ    exper
#> iid F 6.710039 82.00533
#> attr(,"df1")
#> [1] 2
#> attr(,"quantiles")
#>               2.5%      97.5%
#> educ  -0.173031596 0.23636349
#> exper -0.002652574 0.03457952
#> attr(,"quantiles")attr(,"q")
#> [1] 0.025 0.975
#> attr(,"quantiles")attr(,"samples")
#> [1] 100

Comparison with output from ivreg2

Code run using Stata version 16.1.

use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.dta, clear

// ssc install ivreg2
ivreg2 lwage (educ exper = age kidslt6 kidsge6) if !missing(lwage, educ, exper, age, kidslt6, kidsge6), first
First-stage regressions
-----------------------


First-stage regression of educ:

Statistics consistent for homoskedasticity only
Number of obs =                    428
------------------------------------------------------------------------------
        educ |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |  -.0185412   .0163449    -1.13   0.257    -.0506683    .0135859
     kidslt6 |   .6984283   .2966854     2.35   0.019     .1152709    1.281586
     kidsge6 |   -.222821   .0906154    -2.46   0.014    -.4009324   -.0447096
       _cons |   13.64009   .7644499    17.84   0.000     12.13751    15.14268
------------------------------------------------------------------------------
F test of excluded instruments:
  F(  3,   424) =     4.47
  Prob > F      =   0.0042
Sanderson-Windmeijer multivariate F test of excluded instruments:
  F(  2,   424) =     6.69
  Prob > F      =   0.0014


First-stage regression of exper:

Statistics consistent for homoskedasticity only
Number of obs =                    428
------------------------------------------------------------------------------
       exper |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .3948754   .0496446     7.95   0.000     .2972953    .4924555
     kidslt6 |  -.7469412   .9011267    -0.83   0.408    -2.518173    1.024291
     kidsge6 |  -1.430306   .2752275    -5.20   0.000    -1.971286   -.8893254
       _cons |  -1.500019   2.321874    -0.65   0.519    -6.063837    3.063798
------------------------------------------------------------------------------
F test of excluded instruments:
  F(  3,   424) =    55.04
  Prob > F      =   0.0000
Sanderson-Windmeijer multivariate F test of excluded instruments:
  F(  2,   424) =    81.81
  Prob > F      =   0.0000



Summary results for first-stage regressions
-------------------------------------------

                                           (Underid)            (Weak id)
Variable     | F(  3,   424)  P-val | SW Chi-sq(  2) P-val | SW F(  2,   424)
educ         |       4.47    0.0042 |       13.51   0.0012 |        6.69
exper        |      55.04    0.0000 |      165.17   0.0000 |       81.81

Stock-Yogo weak ID F test critical values for single endogenous regressor:
                                    5% maximal IV relative bias    13.91
                                   10% maximal IV relative bias     9.08
                                   20% maximal IV relative bias     6.46
                                   30% maximal IV relative bias     5.39
                                   10% maximal IV size             22.30
                                   15% maximal IV size             12.83
                                   20% maximal IV size              9.54
                                   25% maximal IV size              7.80
Source: Stock-Yogo (2005).  Reproduced by permission.
NB: Critical values are for Sanderson-Windmeijer F statistic.

Underidentification test
Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)
Ha: matrix has rank=K1 (identified)
Anderson canon. corr. LM statistic       Chi-sq(2)=13.10    P-val=0.0014

Weak identification test
Ho: equation is weakly identified
Cragg-Donald Wald F statistic                                       4.46

Stock-Yogo weak ID test critical values for K1=2 and L1=3:
                                   10% maximal IV size             13.43
                                   15% maximal IV size              8.18
                                   20% maximal IV size              6.40
                                   25% maximal IV size              5.45
Source: Stock-Yogo (2005).  Reproduced by permission.

Weak-instrument-robust inference
Tests of joint significance of endogenous regressors B1 in main equation
Ho: B1=0 and orthogonality conditions are valid
Anderson-Rubin Wald test           F(3,424)=       2.08     P-val=0.1025
Anderson-Rubin Wald test           Chi-sq(3)=      6.29     P-val=0.0983
Stock-Wright LM S statistic        Chi-sq(3)=      6.20     P-val=0.1023

Number of observations               N  =        428
Number of regressors                 K  =          3
Number of endogenous regressors      K1 =          2
Number of instruments                L  =          4
Number of excluded instruments       L1 =          3

IV (2SLS) estimation
--------------------

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

                                                      Number of obs =      428
                                                      F(  2,   425) =     3.03
                                                      Prob > F      =   0.0492
Total (centered) SS     =  223.3274513                Centered R2   =   0.1482
Total (uncentered) SS   =   829.594813                Uncentered R2 =   0.7707
Residual SS             =  190.2315236                Root MSE      =    .6667

------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        educ |   .1058361   .0806975     1.31   0.190    -.0523281    .2640003
       exper |   .0161527    .007568     2.13   0.033     .0013197    .0309858
       _cons |  -.3601821   1.029787    -0.35   0.727    -2.378528    1.658164
------------------------------------------------------------------------------
Underidentification test (Anderson canon. corr. LM statistic):          13.101
                                                   Chi-sq(2) P-val =    0.0014
------------------------------------------------------------------------------
Weak identification test (Cragg-Donald Wald F statistic):                4.463
Stock-Yogo weak ID test critical values: 10% maximal IV size             13.43
                                         15% maximal IV size              8.18
                                         20% maximal IV size              6.40
                                         25% maximal IV size              5.45
Source: Stock-Yogo (2005).  Reproduced by permission.
------------------------------------------------------------------------------
Sargan statistic (overidentification test of all instruments):           1.168
                                                   Chi-sq(1) P-val =    0.2798
------------------------------------------------------------------------------
Instrumented:         educ exper
Excluded instruments: age kidslt6 kidsge6
------------------------------------------------------------------------------

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.