The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
ivglm()
helpfile. First simulate some example data.set.seed(12345)
n <- 5000
psi0 <- 0.5
psi1 <- 0.2
Z <- rbinom(n, 1, 0.5)
X <- rbinom(n, 1, 0.7*Z + 0.2*(1 - Z))
m0 <- plogis(1 + 0.8*X - 0.39*Z)
Y <- rbinom(n, 1, plogis(psi0*X + log(m0/(1 - m0))))
dat <- data.frame(Z, X, Y)
msmm()
.fit02 <- msmm(Y ~ X | Z, data = dat)
summary(fit02)
#>
#> Estimation method: gmm
#>
#> GMM fit summary:
#>
#> Call:
#> gmm::gmm(g = msmmMoments, x = dat, t0 = t0, vcov = "iid")
#>
#>
#> Method: twoStep
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Theta[1] 7.4993e-01 1.2332e-02 6.0810e+01 0.0000e+00
#> Theta[2] 1.0198e-01 2.8219e-02 3.6140e+00 3.0156e-04
#>
#> J-Test: degrees of freedom is 0
#> J-test P-value
#> Test E(g)=0: 3.31877269935166e-06 *******
#>
#> #############
#> Information related to the numerical optimization
#> Convergence code = 0
#> Function eval. = 61
#> Gradian eval. = NA
#>
#> E[Y(0)] with 95% CI:
#> 0.025 0.975
#> 0.7499 0.7258 0.7741
#>
#> Causal risk ratio with 95% CI:
#> CRR 0.025 0.975
#> X 1.107 1.048 1.17
fit03 <- msmm(Y ~ X | Z, data = dat, estmethod = "gmmalt")
summary(fit03)
#>
#> Estimation method: gmmalt
#>
#> GMM fit summary:
#>
#> Call:
#> gmm::gmm(g = msmmAltMoments, x = dat, t0 = t0, vcov = "iid")
#>
#>
#> Method: twoStep
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Theta[1] -2.8759e-01 1.6444e-02 -1.7489e+01 1.7356e-68
#> Theta[2] 1.0173e-01 2.8217e-02 3.6053e+00 3.1178e-04
#>
#> J-Test: degrees of freedom is 0
#> J-test P-value
#> Test E(g)=0: 3.75832932725745e-06 *******
#>
#> #############
#> Information related to the numerical optimization
#> Convergence code = 0
#> Function eval. = 55
#> Gradian eval. = NA
#>
#> E[Y(0)] with 95% CI:
#> 0.025 0.975
#> 0.7501 0.7263 0.7746
#>
#> Causal risk ratio with 95% CI:
#> CRR 0.025 0.975
#> X 1.107 1.048 1.17
fit04 <- msmm(Y ~ X | Z, data = dat, estmethod = "tsls")
summary(fit04)
#>
#> Estimation method: tsls
#>
#> Stage 1 summary:
#>
#> Call:
#> stats::lm(formula = exposure ~ z)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.6206 -0.1873 -0.1873 0.3794 0.8127
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.187272 0.008878 21.09 <2e-16 ***
#> z 0.433336 0.012474 34.74 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.441 on 4998 degrees of freedom
#> Multiple R-squared: 0.1945, Adjusted R-squared: 0.1943
#> F-statistic: 1207 on 1 and 4998 DF, p-value: < 2.2e-16
#>
#> TSLS fit summary:
#>
#> Call:
#> ivreg::ivreg(formula = outcome ~ exposure | z)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.7500 0.1532 0.1532 0.2500 0.2500
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.75000 0.01173 63.95 <2e-16 ***
#> exposure -0.90315 0.02545 -35.49 <2e-16 ***
#>
#> Diagnostic tests:
#> df1 df2 statistic p-value
#> Weak instruments 1 4998 1206.9 <2e-16 ***
#> Wu-Hausman 1 4997 147.1 <2e-16 ***
#> Sargan 0 NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.3898 on 4998 degrees of freedom
#> Multiple R-Squared: 0.3569, Adjusted R-squared: 0.3567
#> Wald test: 1260 on 1 and 4998 DF, p-value: < 2.2e-16
#>
#>
#> E[Y(0)] with 95% CI:
#> 2.5 % 97.5 %
#> 0.750 0.727 0.773
#>
#> Causal risk ratio with 95% CI:
#> [1] 1.107 1.048 1.170
fit05 <- msmm(Y ~ X | Z, data = dat, estmethod = "tslsalt")
summary(fit05)
#>
#> Estimation method: tslsalt
#>
#> Stage 1 summary:
#>
#> Call:
#> stats::lm(formula = exposure ~ z)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.5809 -0.1895 -0.1895 0.4191 0.8105
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.580867 0.008959 64.84 <2e-16 ***
#> z -0.391369 0.012587 -31.09 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.445 on 4998 degrees of freedom
#> Multiple R-squared: 0.1621, Adjusted R-squared: 0.1619
#> F-statistic: 966.8 on 1 and 4998 DF, p-value: < 2.2e-16
#>
#> TSLS fit summary:
#>
#> Call:
#> ivreg::ivreg(formula = outcome ~ exposure | z)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.8304 0.1696 0.1696 0.2768 0.2768
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.83043 0.01341 61.94 <2e-16 ***
#> exposure -1.10723 0.03120 -35.49 <2e-16 ***
#>
#> Diagnostic tests:
#> df1 df2 statistic p-value
#> Weak instruments 1 4998 966.8 <2e-16 ***
#> Wu-Hausman 1 4997 354.2 <2e-16 ***
#> Sargan 0 NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.4316 on 4998 degrees of freedom
#> Multiple R-Squared: 0.2282, Adjusted R-squared: 0.2281
#> Wald test: 1260 on 1 and 4998 DF, p-value: < 2.2e-16
#>
#>
#> Causal risk ratio with 95% CI:
#> [1] 1.107 1.048 1.170
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.