The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In this vignette we show the basis to create shiny apps. To do so we will use the mock results provided by the package:
library(OmopViewer)
omopViewerResults
#> # A tibble: 39,264 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 synthea-covid19-20… overall overall overall overall
#> 2 1 synthea-covid19-20… overall overall overall overall
#> 3 1 synthea-covid19-20… overall overall overall overall
#> 4 1 synthea-covid19-20… overall overall overall overall
#> 5 1 synthea-covid19-20… overall overall overall overall
#> 6 1 synthea-covid19-20… overall overall overall overall
#> 7 1 synthea-covid19-20… overall overall overall overall
#> 8 1 synthea-covid19-20… overall overall overall overall
#> 9 1 synthea-covid19-20… overall overall overall overall
#> 10 1 synthea-covid19-20… overall overall overall overall
#> # ℹ 39,254 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
summary(omopViewerResults)
#> A summarised_result object with 39264 rows, 95 different result_id, 1 different
#> cdm names, and 44 settings.
#> CDM names: synthea-covid19-200k.
#> Settings: result_type, package_name, package_version, group, strata,
#> additional, min_cell_count, analysis, analysis_censor_cohort_name,
#> analysis_complete_database_intervals, analysis_full_contribution,
#> analysis_outcome_washout, analysis_repeated_events, analysis_type, censor_date,
#> cohort_definition_id, cohort_table_name, denominator_age_group, …, type, and
#> unknown_indication_table.
Let’s use a subset of the default result data set:
result <- omopViewerResults |>
omopgenerics::filterSettings(
result_type %in% c("summarise_omop_snapshot", "summarise_characteristics", "incidence")
)
Using the default parameters you only have to provide a directory and
a
exportStaticApp(result = result, directory = tempdir())
#> ℹ Processing data
#> ✔ Data processed: 3 panels idenfied: `summarise_omop_snapshot`,
#> `summarise_characteristics`, and `incidence`.
#> ℹ Creating shiny from provided data
#> `analysis`, `analysis_full_contribution`, `analysis_type`, `censor_date`,
#> `cohort_definition_id`, `cohort_table_name`, `gap_era`, `incident`,
#> `index_date`, `indication_cohort_name`, `interval`, `mutually_exclusive`,
#> `overlap_by`, `prior_drug_observation`, `prior_use_washout`,
#> `restrict_incident`, `restrict_to_first_discontinuation`,
#> `restrict_to_first_entry`, …, `type`, and `unknown_indication_table` eliminated
#> from settings as all elements are NA.
#> ✔ Shiny created in:
#> /var/folders/pl/k11lm9710hlgl02nvzx4z9wr0000gp/T//RtmpRMcqhi/shiny
The panels that will be created are defined by the
panelDetails
argument. By default, a tab is created by each
result_type
of the result object. The default tab
getPanel("default")
is used if no tab is defined for that
result_type
in omopViewerPanels. Let’s see
the default panelDetails
:
panelDetails <- panelDetailsFromResult(result)
panelDetails
#> $summarise_omop_snapshot
#> Snapshot (OmopViewer panel)
#> • icon: clipboard-list
#> • data: result_type: <summarise_omop_snapshot>
#> • filters: 1 filters + 1 automatic filters
#> • content: Tidy (DT); Table Snapshot (gt)
#>
#> $summarise_characteristics
#> Cohort Characteristics (OmopViewer panel)
#> • icon: users-gear
#> • data: result_type: <summarise_characteristics>
#> • filters: 1 filters + 4 automatic filters
#> • content: Tidy (DT); Table Characteristics (gt); Plot Characteristics (plot)
#>
#> $incidence
#> Incidence (OmopViewer panel)
#> • icon: chart-line
#> • data: result_type: <incidence>
#> • filters: 1 filters + 6 automatic filters
#> • content: Tidy (DT); Table Incidence (gt); Plot Incidence (plot)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.