The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction to omicsQC

Introduction

OmicsQC is a package designed to analyze quality control metrics for multi-sample studies and nominate putative outlier samples for exclusion using unbiased statistical approaches. The package can be subdivided into three parts: quality score calculation, outlier detection, and data visualization. The flowchart below illustrates how these parts interact and the flow of data throughout the package. The package comes with example data, consisting of 100 samples from a recent profiling study that all have been scored according to 26 quality control metrics.

Setup

Loading package and importing example data:

library(OmicsQC);

# Loading Data
data('example.qc.dataframe'); # Metric scores across samples
data('sign.correction'); # The directionality of metrics
data('ylabels'); # Formatted metric labels for heatmap

Generation and aggregation of z-scores

To get a total score for the quality of a sample, this package will calculate the z-score of each test metric for each sample, correct for the directionality of each metric, and aggregate the z-scores by the sum across metrics. This package can be used independent of test metrics used.

Calculation of z-scores

zscores.from.metrics takes quality control data for each sample and calculates the z-score across each metric. Each row of qc.data should correspond to a sample, and each column to a test metric. An example input dataframe can be seen below.

UniquelyMapped.Percent.Input Unmapped.Percent.Input MultiMapped.Percent.Input UniquelyMapped.Percent.IP Unmapped.Percent.IP MultiMapped.Percent.IP UniquelyMapped.Count.Input Unmapped.Count.Input MultiMapped.Count.Input UniquelyMapped.Count.IP Unmapped.Count.IP MultiMapped.Count.IP FailedToDetermine.Input 1++,1–,2+-,2-+.Input 1+-,1-+,2++,2–.Input FailedToDetermine.IP 1++,1–,2+-,2-+.IP 1+-,1-+,2++,2–.IP Adapter1.percent.Input Adapter2.percent.Input Adapter1.percent.IP Adapter2.percent.IP PercentEK12.Input PercentEK12.IP Bulk.Rho Array.Rho
CPCG0100 70.25 10.97 18.79 71.43 18.94 9.63 19390677 3026043 5184967 35552770 9427024 4795939 0.1052 0.0561 0.8387 0.0859 0.0876 0.8264 37.29189 37.13687 11.174902 12.12284 10.088863 17.83939 0.6871488 0.5134328
CPCG0183 69.29 8.75 21.95 76.34 12.32 11.34 21602350 2729165 6845636 30383237 4902919 4514371 0.1128 0.0418 0.8453 0.1000 0.0943 0.8057 22.18476 22.30754 9.909489 11.40783 6.695480 11.11634 0.6792404 0.5317954
CPCG0184 64.60 11.24 24.15 62.30 15.82 21.88 29991436 5220018 11212198 34749241 8820783 12206427 0.1851 0.0379 0.7769 0.1049 0.0673 0.8279 33.41293 33.27873 17.675824 18.62967 7.911547 12.86091 0.7057109 0.5323726
CPCG0191 64.12 13.95 21.94 77.26 10.66 12.08 39537338 8598400 13522075 40261018 5552929 6295091 0.1993 0.0412 0.7595 0.1194 0.0640 0.8166 42.73819 42.77692 23.696300 24.86895 4.845386 10.48673 0.6795978 0.4941515
CPCG0192 64.38 13.01 22.62 79.51 7.97 12.52 39035170 7888213 13713112 38755562 3883013 6102481 0.3495 0.0405 0.6099 0.1522 0.0764 0.7714 38.90706 38.96469 17.103888 18.34758 4.815169 11.28928 0.6795978 0.4941515
CPCG0196 64.85 13.58 21.57 69.92 20.30 9.77 29623574 6200466 9853011 51581803 14978568 7209183 0.1721 0.0472 0.7807 0.0913 0.0692 0.8395 37.05674 36.74628 22.523467 23.25110 8.992902 15.51477 0.7109169 0.5246630
zscores <- zscores.from.metrics(qc.data = example.qc.dataframe);

The function returns a dataframe containing the z-scores for each sample and test metric. The example data in this package would return the dataframe below.

UniquelyMapped.Percent.Input Unmapped.Percent.Input MultiMapped.Percent.Input UniquelyMapped.Percent.IP Unmapped.Percent.IP MultiMapped.Percent.IP UniquelyMapped.Count.Input Unmapped.Count.Input MultiMapped.Count.Input UniquelyMapped.Count.IP Unmapped.Count.IP MultiMapped.Count.IP FailedToDetermine.Input 1++,1–,2+-,2-+.Input 1+-,1-+,2++,2–.Input FailedToDetermine.IP 1++,1–,2+-,2-+.IP 1+-,1-+,2++,2–.IP Adapter1.percent.Input Adapter2.percent.Input Adapter1.percent.IP Adapter2.percent.IP PercentEK12.Input PercentEK12.IP Bulk.Rho Array.Rho
CPCG0100 0.5448279 -0.2092575 -0.5398954 0.2808877 0.0305740 -0.7730446 -1.1795856 -0.9100092 -1.2412323 0.0342785 -0.0537049 -0.5359233 -0.7183556 0.1187405 0.7065515 -0.2352108 -0.0394160 0.2638734 0.1661573 0.1624467 -0.9010710 -0.9246914 0.8904284 0.7404171 0.1709534 0.4181559
CPCG0183 0.4128684 -0.7502515 0.0112496 0.7458771 -0.5547355 -0.3739424 -1.0165807 -0.9877796 -0.9230678 -0.2689982 -0.5357854 -0.6190383 -0.6594594 -0.4550984 0.7585148 -0.0385626 0.1614107 -0.0382884 -0.7802375 -0.7814451 -1.0311481 -1.0001724 -0.0273160 -0.2719865 0.0844681 0.7407992
CPCG0184 -0.2318089 -0.1434609 0.3949582 -0.5837463 -0.2452818 2.0860207 -0.3982875 -0.3352732 -0.0864865 -0.0128615 -0.1183048 1.6515511 -0.0991704 -0.6115999 0.2199859 0.0297762 -0.6478908 0.2857692 -0.0768423 -0.0831253 -0.2328137 -0.2377904 0.3015706 -0.0092771 0.3739437 0.7509409
CPCG0191 -0.2977887 0.5169417 0.0095055 0.8330034 -0.7015049 -0.2012315 0.3052655 0.5497312 0.3560584 0.3104933 -0.4665215 -0.0933942 0.0108726 -0.4791755 0.0829917 0.2320031 -0.7468054 0.1208209 0.5073442 0.5214372 0.3860564 0.4208663 -0.5276761 -0.3667977 0.0883766 0.0793716
CPCG0192 -0.2620496 0.2878722 0.1281063 1.0460840 -0.9393421 -0.0985386 0.2682546 0.3636899 0.3926589 0.2221740 -0.6444647 -0.1502500 1.1748478 -0.5072655 -1.0948434 0.6894543 -0.3751262 -0.5389720 0.2673407 0.2787879 -0.2916055 -0.2675694 -0.5358483 -0.2459436 0.0883766 0.0793716
CPCG0196 -0.1974444 0.4267760 -0.0550273 0.1378869 0.1508189 -0.7403695 -0.4253997 -0.0784340 -0.3468906 0.9746403 0.5378577 0.1764332 -0.1999139 -0.2384040 0.2499042 -0.1598987 -0.5909400 0.4550966 0.1514266 0.1375855 0.2654958 0.2500770 0.5940246 0.3903588 0.4308755 0.6154787

Adjusting metric directionality

This package is designed to be independent of test metrics used, but since some test metrics are better if they are larger and some are better if they are smaller, the sign of a poor z-score will differ between the metrics. We must therefore adjust the metrics such that negative z-scores is considered a bad measurement across all tests. The function correct.zscore.signs requires input that states if a positive or a negative z-score is good for each metric. This input takes the form of a dataframe with a column for metric and a column for sign which have the potential values ‘pos’ or ‘neg’ for each metric used.

The function correct.zscore.signs also sets all non-negative z-scores to zero to make sure positive and negative values do not cancel each other out when we calculate an accumulated score.

Apart from the zscores, and signs.data, the function also takes the names of the columns containing the metric name and the sign instructions in sign.data.

Metric Sign
UniquelyMapped.Percent.Input pos
Unmapped.Percent.Input neg
MultiMapped.Percent.Input pos
UniquelyMapped.Percent.IP pos
Unmapped.Percent.IP neg
MultiMapped.Percent.IP pos
zscores.corrected <- correct.zscore.signs(
  zscores = zscores,
  signs.data = sign.correction,
  metric.col.name = 'Metric',
  signs.col.name = 'Sign'
  );

The output of the function, zscores.corrected, can now be used to calculate accumulated scores for each sample.

UniquelyMapped.Percent.Input Unmapped.Percent.Input MultiMapped.Percent.Input UniquelyMapped.Percent.IP Unmapped.Percent.IP MultiMapped.Percent.IP UniquelyMapped.Count.Input Unmapped.Count.Input MultiMapped.Count.Input UniquelyMapped.Count.IP Unmapped.Count.IP MultiMapped.Count.IP FailedToDetermine.Input 1++,1–,2+-,2-+.Input 1+-,1-+,2++,2–.Input FailedToDetermine.IP 1++,1–,2+-,2-+.IP 1+-,1-+,2++,2–.IP Adapter1.percent.Input Adapter2.percent.Input Adapter1.percent.IP Adapter2.percent.IP PercentEK12.Input PercentEK12.IP Bulk.Rho Array.Rho
CPCG0100 0.0000000 0.0000000 -0.5398954 0.0000000 -0.0305740 -0.7730446 -1.1795856 0.0000000 -1.2412323 0.0000000 0.0000000 -0.5359233 0.0000000 -0.1187405 0.000000 0.0000000 0.0000000 0.0000000 -0.1661573 -0.1624467 0.0000000 0.0000000 -0.8904284 -0.7404171 0 0
CPCG0183 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.3739424 -1.0165807 0.0000000 -0.9230678 -0.2689982 0.0000000 -0.6190383 0.0000000 0.0000000 0.000000 0.0000000 -0.1614107 -0.0382884 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0 0
CPCG0184 -0.2318089 0.0000000 0.0000000 -0.5837463 0.0000000 0.0000000 -0.3982875 0.0000000 -0.0864865 -0.0128615 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 -0.0297762 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -0.3015706 0.0000000 0 0
CPCG0191 -0.2977887 -0.5169417 0.0000000 0.0000000 0.0000000 -0.2012315 0.0000000 -0.5497312 0.0000000 0.0000000 0.0000000 -0.0933942 -0.0108726 0.0000000 0.000000 -0.2320031 0.0000000 0.0000000 -0.5073442 -0.5214372 -0.3860564 -0.4208663 0.0000000 0.0000000 0 0
CPCG0192 -0.2620496 -0.2878722 0.0000000 0.0000000 0.0000000 -0.0985386 0.0000000 -0.3636899 0.0000000 0.0000000 0.0000000 -0.1502500 -1.1748478 0.0000000 -1.094843 -0.6894543 0.0000000 -0.5389720 -0.2673407 -0.2787879 0.0000000 0.0000000 0.0000000 0.0000000 0 0
CPCG0196 -0.1974444 -0.4267760 -0.0550273 0.0000000 -0.1508189 -0.7403695 -0.4253997 0.0000000 -0.3468906 0.0000000 -0.5378577 0.0000000 0.0000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000 -0.1514266 -0.1375855 -0.2654958 -0.2500770 -0.5940246 -0.3903588 0 0

Calculating total quality score

accumulate.zscores takes the zscores.corrected dataframe and calculates a total quality score for each sample. It does this by summing over all negative z-scores. It then orders the data by the magnitude of the quality score and returns the result in a dataframe.

quality.scores <- accumulate.zscores(zscores.corrected = zscores.corrected);

The resulting quality.scores is shown below:

Sample Sum
CPCG0184 CPCG0184 -1.644537
CPCG0250 CPCG0250 -1.648902
CPCG0457 CPCG0457 -1.879131
CPCG0236 CPCG0236 -1.923124
CPCG0333 CPCG0333 -2.009918
CPCG0346 CPCG0346 -2.057996

Outlier detection using cosine similarity

The second part of the package offers distribution fitting and outlier detection using two implementations of the cosine outlier detection method. They are both based on cosine similarity, but the two implementations offer pros and cons. Generally speaking, the cutoff method has a low sensitivity but a high precision, while the iterative method has a high sensitivity but low precision.

Finding the best fitting distribution

The function fit.and.evaluate takes the quality.scores and evaluates how well they fit to some common distributions. It returns a Bayesian Information Criterion score as well as a Kolmogorov–Smirnov test result for each distribution.

fit.results <- fit.and.evaluate(
    quality.scores = quality.scores,
    trim.factor = 0.15
    );

fit.and.evaluate returns the dataframe printed below:

distribution KS.rejected BIC.value
5 lnorm FALSE 342.1010
3 gamma FALSE 346.2334
1 weibull TRUE 355.5584
2 norm TRUE 361.3964
7 logis FALSE 362.2932
6 cauchy TRUE 375.5290
4 exp TRUE 423.9251

The iterative method for outlier nomination using cosine similarity

The function cosine.similarity.iterative takes quality.scores, trims the proportion of data indicated by trim.factor from each extreme, and fits it to the distribution given. It then tests the largest datapoint compared a null distribution of size no.simulations. If the largest datapoint has a significant p-value, it moves onto the 2nd largest datapoint and so on, until it reaches a datapoint whose p-value is insignificant.

outlier.detect.iterative.res <- cosine.similarity.iterative(
    quality.scores = quality.scores,
    distribution = 'lnorm',
    no.simulations = 1000,
    trim.factor = 0.15,
    alpha.significant = 0.05
    );

Number of outliers found:

print(outlier.detect.iterative.res$no.outliers);
#> [1] 10

The sample labels of the outliers:

print(outlier.detect.iterative.res$outlier.labels);
#>  [1] "CPCG0375" "CPCG0382" "CPCG0498" "CPCG0464" "CPCG0437" "CPCG0235"
#>  [7] "CPCG0486" "CPCG0263" "CPCG0266" "CPCG0256"

The cutoff method for outlier nomination using cosine similarity

The function cosine.similarity.cutoff takes quality.scores, trims the proportion of data indicated by trim.factor from each extreme, and fits it to the distribution given. It then simulates as many datasets as stated by no.simulations, and computes the cosine similarity of each dataset against theoretical distribution. Using this simulatd dataset, it estimates the cutoff threshold for cosine similarity which would correspond to a statistically significant p-value (determined by alpha.significant) and nominates outliers that surpass this threshold.

outlier.detect.cutoff.res <- cosine.similarity.cutoff(
    quality.scores = quality.scores,
    distribution = 'lnorm',
    no.simulations = 1000,
    trim.factor = 0.15,
    alpha.significant = 0.05
    );

Quality score cutoff:

print(outlier.detect.cutoff.res$cutoff);
#>       5% 
#> 24.63923

Number of outliers found:

print(outlier.detect.cutoff.res$no.outliers);
#> [1] 6

The sample labels of the outliers:

print(outlier.detect.cutoff.res$outlier.labels);
#> [1] "CPCG0235" "CPCG0437" "CPCG0464" "CPCG0498" "CPCG0382" "CPCG0375"

Data visualisation

The third aspect of the package is the visualization of the quality control data. Several functions have been adapted from the package BoutrosLab.plotting.general and customized for the purposes of this package. These functions offer standardized plots with flexibility for customization to aid in data visualization.

Quality score barplot

The function get.qc.barplot takes the accumulated quality scores (quality.scores) and returns a barplot displaying the scores from lowest to highest. It can also optionally depict a cut-off for outlier nomination. If filename is not NULL, it is saved to file. Otherwise, the trellis object is returned.

qc.barplot <- get.qc.barplot(
    quality.scores = quality.scores,
    abline.h = - outlier.detect.cutoff.res$cutoff
    );

Z-score heatmap

The function get.qc.heatmap takes the dataframe with the corrected z-scores for each sample (zscores.corrected) and metric as well as a vector of labels (ylabels) for the y-axis. The labels should be the full names of the metrics in the same order as they are in the dataframe. The function also takes quality.scores to make sure the samples are in the correct order on the heatmap. The function returns a standardized heatmap. If filename is not NULL, it is saved to file. Otherwise, the trellis object is returned.

qc.heatmap <- get.qc.heatmap(
  zscores = zscores.corrected,
  quality.scores = quality.scores,
  yaxis.lab = ylabels
  );

Aggregating the plots

Now that both the heat map and barplot has been generated they can be aggregated to a multipanelplot. get.qc.multipanelplot takes the barplot, heatmap and a filename and concatenates the plots in a standardized format and saves the multipanelplot to file.

qc.multipanel <- get.qc.multipanelplot(
  barplot = qc.barplot,
  heatmap = qc.heatmap
  );

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.