The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Models for non-linear time series analysis and causality detection. The main functionalities of this package consist of an implementation of the classical causality test (C.W.J.Granger 1980) <doi:10.1016/0165-1889(80)90069-X>, and a non-linear version of it based on feed-forward neural networks. This package contains also an implementation of the Transfer Entropy <doi:10.1103/PhysRevLett.85.461>, and the continuous Transfer Entropy using an approximation based on the k-nearest neighbors <doi:10.1103/PhysRevE.69.066138>. There are also some other useful tools, like the VARNN (Vector Auto-Regressive Neural Network) prediction model, the Augmented test of stationarity, and the discrete and continuous entropy and mutual information.
Version: | 1.4.5 |
Depends: | Rcpp |
Imports: | methods, timeSeries, Rdpack |
LinkingTo: | Rcpp |
Published: | 2021-02-02 |
DOI: | 10.32614/CRAN.package.NlinTS |
Author: | Youssef Hmamouche [aut, cre] |
Maintainer: | Youssef Hmamouche <hmamoucheyussef at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GNU General Public License] |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
In views: | TimeSeries |
CRAN checks: | NlinTS results |
Reference manual: | NlinTS.pdf |
Package source: | NlinTS_1.4.5.tar.gz |
Windows binaries: | r-devel: NlinTS_1.4.5.zip, r-release: NlinTS_1.4.5.zip, r-oldrel: NlinTS_1.4.5.zip |
macOS binaries: | r-release (arm64): NlinTS_1.4.5.tgz, r-oldrel (arm64): NlinTS_1.4.5.tgz, r-release (x86_64): NlinTS_1.4.5.tgz, r-oldrel (x86_64): NlinTS_1.4.5.tgz |
Old sources: | NlinTS archive |
Please use the canonical form https://CRAN.R-project.org/package=NlinTS to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.