The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

NPRED

Predictor Identifier: Nonparametric PREDiction (NPRED) Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors.

The initial version of NPRED is at Hydrology@UNSW. This is a new version of NPRED without calling Fortran codes.

Applications of this package can be found in: * Jiang, Z., Sharma, A., & Johnson, F. (2021). Variable transformations in the spectral domain – Implications for hydrologic forecasting. Journal of Hydrology, 126816. doi * Jiang, Z., Rashid, M. M., Johnson, F., & Sharma, A. (2020). A wavelet-based tool to modulate variance in predictors: an application to predicting drought anomalies. Environmental Modelling & Software, 135, 104907. doi * Jiang, Z., Sharma, A., & Johnson, F. (2020). Refining Predictor Spectral Representation Using Wavelet Theory for Improved Natural System Modeling. Water Resources Research, 56(3), e2019WR026962. doi

Installation

You can install the package via devtools from GitHub with:

devtools::install_github("zejiang-unsw/NPRED")

or via CRAN with:

install.packages("NPRED")

Citations

Sharma, A., Mehrotra, R. (2014). An information theoretic alternative to model a natural system using observational information alone. Water Resources Research, 50(1): 650-660.

Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C. and Gibbs M.S. (2014). An evaluation framework for input variable selection algorithms for environmental data-driven models, Environmental Modelling and Software, 62, 33-51.

Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). A programming tool for nonparametric system prediction using Partial Informational Correlation and Partial Weights. Environmental Modelling & Software, 83, 271-275.

Mehrotra, R., & Sharma, A. (2006). Conditional resampling of hydrologic time series using multiple predictor variables: A K-nearest neighbour approach. Advances in Water Resources, 29(7), 987-999.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.