The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
For single-cell data, cell-level network analysis can be performed based on joint similarity in alpha chain sequence and beta chain sequence.
We simulate some toy data to demonstrate the usage.
set.seed(42)
library(NAIR)
dat <- simulateToyData(chains = 2)
head(dat)
#> AlphaSeq BetaSeq Count UMIs SampleID
#> 1 TTGAGGAAATTCG TTGAGGAAATTCGG 3095 4 Sample1
#> 2 GGAGATGAATCGG GGAGATGAATCGG 3057 6 Sample1
#> 3 GTCGGGTAATTGG GTCGGGTAATTGGG 3575 8 Sample1
#> 4 GCCGGGTAATTCG GCCGGGTAATTCGG 3994 7 Sample1
#> 5 GAAAGAGAATTCG GAAAGAGAATTCGG 3670 3 Sample1
#> 6 AGGTGGGAATTCG AGGTGGGAATTCG 4076 5 Sample1
The input data is assumed to have the following format:
Dual-chain network analysis can be performed using
buildRepSeqNetwork()
(or
generateNetworkObjects()
) by supplying a length-2 vector to
the seq_col
parameter:
# Build network based on joint dual-chain similarity
network <- buildNet(dat,
seq_col = c("AlphaSeq", "BetaSeq"),
count_col = "UMIs",
node_stats = TRUE,
stats_to_include = "all",
cluster_stats = TRUE,
color_nodes_by = "SampleID",
size_nodes_by = "UMIs",
node_size_limits = c(0.5, 3)
)
We print the network graph plot with labels added for the largest two clusters:
The list returned buildRepSeqNetwork()
the following
items:
names(network)
#> [1] "details" "igraph" "adjacency_matrix" "adj_mat_a"
#> [5] "adj_mat_b" "node_data" "cluster_data" "plots"
Notice that the list contains three adjacency matrices:
adjacency_matrix
corresponds to the network based on joint
similarity in both chain sequences, while adj_mat_a
corresponds to the network based only on similarity in the alpha-chain
sequence (and similarly for adj_mat_b
).
The cluster-level data contains sequence-based cluster statistics for each of the alpha and beta chain sequences:
head(network$cluster_data)
#> cluster_id node_count mean_A_seq_length mean_B_seq_length mean_degree
#> 1 1 15 12.13 12.87 2.60
#> 2 2 13 13.00 13.08 4.00
#> 3 3 16 13.00 13.94 5.81
#> 4 4 10 12.00 12.00 2.90
#> 5 5 3 13.00 14.00 1.67
#> 6 6 3 13.00 14.00 2.00
#> max_degree A_seq_w_max_degree B_seq_w_max_degree agg_count max_count
#> 1 7 AAAAAAAAATTC AAAAAAAAATTCG 42 6
#> 2 11 GGGGGGGAATTGG GGGGGGGAATTGG 28 6
#> 3 12 GGGGGGGAATTGG GGGGGGGAATTGGG 49 6
#> 4 6 AAAAAGAAATTG AAAAAGAAATTG 39 7
#> 5 2 AGGGGAGAATTGG AGGGGAGAATTGGG 10 5
#> 6 2 AAAAAAGAATTGC AAAAAAGAATTGCG 4 2
#> A_seq_w_max_count B_seq_w_max_count diameter_length global_transitivity
#> 1 AAAAAAAAATTC AAAAAAAAATTC 6 0.2884615
#> 2 GGGGTGGAATTGG GGGGTGGAATTGG 7 0.3802817
#> 3 GGGGAGAAATTGG GGGGAGAAATTGGG 6 0.6328125
#> 4 AAAGAAAAATTG AAAGAAAAATTG 6 0.3750000
#> 5 AGGGGAGAATTGG AGGGGAGAATTGGG 3 0.0000000
#> 6 AGAAAAGAATTGC AGAAAAGAATTGCG 2 1.0000000
#> assortativity edge_density degree_centrality_index closeness_centrality_index
#> 1 -0.16503588 0.1809524 0.3190476 0.4497821
#> 2 -0.15180055 0.2692308 0.3141026 0.4357891
#> 3 -0.08424855 0.3416667 0.3250000 0.4650078
#> 4 -0.33425414 0.3111111 0.3555556 0.4889192
#> 5 -1.00000000 0.6666667 0.3333333 1.0000000
#> 6 NaN 1.0000000 0.0000000 0.0000000
#> eigen_centrality_index eigen_centrality_eigenvalue
#> 1 0.6385488 3.680389
#> 2 0.6131393 4.419380
#> 3 0.5291669 7.257172
#> 4 0.6107669 3.750958
#> 5 0.5857864 1.414214
#> 6 0.0000000 2.000000
The remainder of the output and customization follows the general case for
buildRepSeqNetwork()
.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.