The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Dual-Chain Network Analysis

For single-cell data, cell-level network analysis can be performed based on joint similarity in alpha chain sequence and beta chain sequence.

We simulate some toy data to demonstrate the usage.

set.seed(42)
library(NAIR)

dat <- simulateToyData(chains = 2)
head(dat)
#>        AlphaSeq        BetaSeq Count UMIs SampleID
#> 1 TTGAGGAAATTCG TTGAGGAAATTCGG  3095    4  Sample1
#> 2 GGAGATGAATCGG  GGAGATGAATCGG  3057    6  Sample1
#> 3 GTCGGGTAATTGG GTCGGGTAATTGGG  3575    8  Sample1
#> 4 GCCGGGTAATTCG GCCGGGTAATTCGG  3994    7  Sample1
#> 5 GAAAGAGAATTCG GAAAGAGAATTCGG  3670    3  Sample1
#> 6 AGGTGGGAATTCG  AGGTGGGAATTCG  4076    5  Sample1

The input data is assumed to have the following format:

Dual-chain network analysis can be performed using buildRepSeqNetwork() (or generateNetworkObjects()) by supplying a length-2 vector to the seq_col parameter:

# Build network based on joint dual-chain similarity
network <- buildNet(dat, 
                    seq_col = c("AlphaSeq", "BetaSeq"),
                    count_col = "UMIs",
                    node_stats = TRUE, 
                    stats_to_include = "all",
                    cluster_stats = TRUE, 
                    color_nodes_by = "SampleID",
                    size_nodes_by = "UMIs",
                    node_size_limits = c(0.5, 3)
)

We print the network graph plot with labels added for the largest two clusters:

addClusterLabels(network$plots$SampleID, network, top_n_clusters = 2, size = 8)

The list returned buildRepSeqNetwork() the following items:

names(network)
#> [1] "details"          "igraph"           "adjacency_matrix" "adj_mat_a"       
#> [5] "adj_mat_b"        "node_data"        "cluster_data"     "plots"

Notice that the list contains three adjacency matrices: adjacency_matrix corresponds to the network based on joint similarity in both chain sequences, while adj_mat_a corresponds to the network based only on similarity in the alpha-chain sequence (and similarly for adj_mat_b).

The cluster-level data contains sequence-based cluster statistics for each of the alpha and beta chain sequences:

head(network$cluster_data)
#>   cluster_id node_count mean_A_seq_length mean_B_seq_length mean_degree
#> 1          1         15             12.13             12.87        2.60
#> 2          2         13             13.00             13.08        4.00
#> 3          3         16             13.00             13.94        5.81
#> 4          4         10             12.00             12.00        2.90
#> 5          5          3             13.00             14.00        1.67
#> 6          6          3             13.00             14.00        2.00
#>   max_degree A_seq_w_max_degree B_seq_w_max_degree agg_count max_count
#> 1          7       AAAAAAAAATTC      AAAAAAAAATTCG        42         6
#> 2         11      GGGGGGGAATTGG      GGGGGGGAATTGG        28         6
#> 3         12      GGGGGGGAATTGG     GGGGGGGAATTGGG        49         6
#> 4          6       AAAAAGAAATTG       AAAAAGAAATTG        39         7
#> 5          2      AGGGGAGAATTGG     AGGGGAGAATTGGG        10         5
#> 6          2      AAAAAAGAATTGC     AAAAAAGAATTGCG         4         2
#>   A_seq_w_max_count B_seq_w_max_count diameter_length global_transitivity
#> 1      AAAAAAAAATTC      AAAAAAAAATTC               6           0.2884615
#> 2     GGGGTGGAATTGG     GGGGTGGAATTGG               7           0.3802817
#> 3     GGGGAGAAATTGG    GGGGAGAAATTGGG               6           0.6328125
#> 4      AAAGAAAAATTG      AAAGAAAAATTG               6           0.3750000
#> 5     AGGGGAGAATTGG    AGGGGAGAATTGGG               3           0.0000000
#> 6     AGAAAAGAATTGC    AGAAAAGAATTGCG               2           1.0000000
#>   assortativity edge_density degree_centrality_index closeness_centrality_index
#> 1   -0.16503588    0.1809524               0.3190476                  0.4497821
#> 2   -0.15180055    0.2692308               0.3141026                  0.4357891
#> 3   -0.08424855    0.3416667               0.3250000                  0.4650078
#> 4   -0.33425414    0.3111111               0.3555556                  0.4889192
#> 5   -1.00000000    0.6666667               0.3333333                  1.0000000
#> 6           NaN    1.0000000               0.0000000                  0.0000000
#>   eigen_centrality_index eigen_centrality_eigenvalue
#> 1              0.6385488                    3.680389
#> 2              0.6131393                    4.419380
#> 3              0.5291669                    7.257172
#> 4              0.6107669                    3.750958
#> 5              0.5857864                    1.414214
#> 6              0.0000000                    2.000000

The remainder of the output and customization follows the general case for buildRepSeqNetwork().

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.