The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

MultiRR: Bias, Precision, and Power for Multi-Level Random Regressions

Calculates bias, precision, and power for multi-level random regressions. Random regressions are types of hierarchical models in which data are structured in groups and (regression) coefficients can vary by groups. Tools to estimate model performance are designed mostly for scenarios where (regression) coefficients vary at just one level. 'MultiRR' provides simulation and analytical tools (based on 'lme4') to study model performance for random regressions that vary at more than one level (multi-level random regressions), allowing researchers to determine optimal sampling designs.

Version: 1.1
Imports: MASS, lme4
Published: 2015-10-21
DOI: 10.32614/CRAN.package.MultiRR
Author: Yimen G. Araya-Ajoy
Maintainer: Yimen G. Araya-Ajoy <yimencr at gmail.com>
License: GPL-2
NeedsCompilation: no
CRAN checks: MultiRR results [issues need fixing before 2025-01-24]

Documentation:

Reference manual: MultiRR.pdf

Downloads:

Package source: MultiRR_1.1.tar.gz
Windows binaries: r-devel: MultiRR_1.1.zip, r-release: MultiRR_1.1.zip, r-oldrel: MultiRR_1.1.zip
macOS binaries: r-release (arm64): MultiRR_1.1.tgz, r-oldrel (arm64): MultiRR_1.1.tgz, r-release (x86_64): MultiRR_1.1.tgz, r-oldrel (x86_64): MultiRR_1.1.tgz
Old sources: MultiRR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=MultiRR to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.