The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Variable Selection in Sparse Multivariate GLARMA Models
Version: 1.0
Date: 2022-09-01
Author: Marina Gomtsyan
Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>
Description: Performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2022), <doi:10.48550/arXiv.2208.14721>.
License: GPL-2
Depends: R (≥ 3.5.0), Matrix, glmnet, stats, ggplot2
VignetteBuilder: knitr
Suggests: knitr, markdown, formatR
NeedsCompilation: no
Packaged: 2022-09-01 14:35:58 UTC; marina
Repository: CRAN
Date/Publication: 2022-09-02 07:50:11 UTC

Variable Selection in Sparse Multivariate GLARMA Models

Description

MultiGlarmaVarSel consists of four functions: "variable_selection.R", "grad_hess_L_gamma.R", "grad_hess_L_eta.R", and "NR_gamma.R" For further information on how to use these functions, we refer the reader to the vignette of the package.

Details

This package consists of four functions: "variable_selection.R", "grad_hess_L_gamma.R", "grad_hess_L_eta.R" and "NR_gamma.R" For further information on how to use these functions, we refer the reader to the vignette of the package.

Author(s)

Marina Gomtsyan

Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Examples

data(Y)
I=3
J=100
T=dim(Y)[2]
q=1
X=matrix(0,nrow=(I*J),ncol=I)
for (i in 1:I)
{
  X[((i-1)*J+1):(i*J),i]=rep(1,J)
}
gamma_0 = matrix(0, nrow = 1, ncol = q)
result=variable_selection(Y, X, gamma_0, k_max=1, 
n_iter=100, method="min", nb_rep_ss=1000, threshold=0.6)
estim_active = result$estim_active
eta_est = result$eta_est
gamma_est = result$gamma_est

Newton-Raphson method for estimation of gamma

Description

This function estimates gamma with Newton-Raphson method

Usage

NR_gamma(Y, X, eta, gamma, I, J, n_iter = 100)

Arguments

Y

Observation matrix

X

Design matrix

eta

Initial eta vector

gamma

Initial gamma vector

I

Number of conditions

J

Number of replications

n_iter

Number of iterations of the algorithm. Default=100

Value

Estimated gamma vector

Author(s)

Marina Gomtsyan

Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Examples

data(Y)
I=3
J=100
T=dim(Y)[2]
q=1
X=matrix(0,nrow=(I*J),ncol=I)
for (i in 1:I)
{
  X[((i-1)*J+1):(i*J),i]=rep(1,J)
}
gamma_0 = matrix(0, nrow = 1, ncol = q)
eta_glm_mat_0 = matrix(0,ncol=T,nrow=I)
for (t in 1:T)
{
  result_glm_0 = glm(Y[,t]~X-1,family=poisson(link='log'))
  eta_glm_mat_0[,t]=as.numeric(result_glm_0$coefficients)
}
eta_0 = round(as.numeric(t(eta_glm_mat_0)),digits=6)
gamma_est=NR_gamma(Y, X, eta_0, gamma_0, I, J, n_iter = 100)

Observation matrix Y

Description

An example of observation matrix

Usage

data("Y")

Format

The format is: num [1:300, 1:15] 3 1 1 0 0 3 2 0 3 2 ...

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Examples

data(Y)

Gradient and Hessian of the log-likelihood with respect to eta

Description

This function calculates the gradient and Hessian of the log-likelihood with respect to eta

Usage

grad_hess_L_eta(Y, X, eta_vect, gamma, I, J)

Arguments

Y

Observation matrix

X

Design matrix

eta_vect

Initial eta vector

gamma

Initial gamma vector

I

Number of conditions

J

Number of replications

Value

grad_L_eta

Vector of the gradient of L with respect to eta

hess_L_eta

Matrix of the Hessian of L with respect to eta

Author(s)

Marina Gomtsyan

Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Examples

data(Y)
I=3
J=100
T=dim(Y)[2]
q=1
X=matrix(0,nrow=(I*J),ncol=I)
for (i in 1:I)
{
  X[((i-1)*J+1):(i*J),i]=rep(1,J)
}
gamma_0 = matrix(0, nrow = 1, ncol = q)
eta_glm_mat_0 = matrix(0,ncol=T,nrow=I)
for (t in 1:T)
{
  result_glm_0 = glm(Y[,t]~X-1,family=poisson(link='log'))
  eta_glm_mat_0[,t]=as.numeric(result_glm_0$coefficients)
}
eta_0 = round(as.numeric(t(eta_glm_mat_0)),digits=6)
result = grad_hess_L_eta(Y, X, eta_0, gamma_0, I, J)
grad = result$grad_L_eta
Hessian = result$hess_L_eta

Gradient and Hessian of the log-likelihood with respect to gamma

Description

This function calculates the gradient and Hessian of the log-likelihood with respect to gamma

Usage

grad_hess_L_gamma(Y, X, eta, gamma, I, J)

Arguments

Y

Observation matrix

X

Design matrix

eta

Initial eta vector

gamma

Initial gamma vector

I

Number of conditions

J

Number of replications

Value

grad_L_gamma

Vector of the gradient of L with respect to gamma

hess_L_gamma

Matrix of the Hessian of L with respect to gamma

Author(s)

Marina Gomtsyan

Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Examples

data(Y)
I=3
J=100
T=dim(Y)[2]
q=1
X=matrix(0,nrow=(I*J),ncol=I)
for (i in 1:I)
{
  X[((i-1)*J+1):(i*J),i]=rep(1,J)
}
gamma_0 = matrix(0, nrow = 1, ncol = q)
eta_glm_mat_0 = matrix(0,ncol=T,nrow=I)
for (t in 1:T)
{
  result_glm_0 = glm(Y[,t]~X-1,family=poisson(link='log'))
  eta_glm_mat_0[,t]=as.numeric(result_glm_0$coefficients)
}
eta_0 = round(as.numeric(t(eta_glm_mat_0)),digits=6)
result = grad_hess_L_gamma(Y, X, eta_0, gamma_0, I, J)
grad = result$grad_L_gamma
Hessian = result$hess_L_gamma

Variable selection

Description

This function performs variable selection, estimates a new vector eta and a new vector gamma

Usage

variable_selection(Y, X, gamma, k_max = 1, n_iter = 100, 
method = "min", nb_rep_ss = 1000, threshold = 0.6)

Arguments

Y

Observation matrix

X

Design matrix

gamma

Initial gamma vector

k_max

Number of iteration to repeat the whole algorithm

n_iter

Number of iteration for Newton-Raphson algorithm

method

Stability selection method: "min" or "cv". In "min" the smallest lambda is chosen, in "cv" cross-validation lambda is chosen for stability selection. The default is "min"

nb_rep_ss

Number of replications in stability selection step. The default is 1000

threshold

Threshold for stability selection. The default is 0.9

Value

estim_active

Vector of stimated active coefficients

eta_est

Vector of estimated eta values

gamma_est

Vector of estimated gamma values

Author(s)

Marina Gomtsyan

Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse multivariate GLARMA models: Application to germination control by environment", arXiv:2208.14721

Examples

data(Y)
I=3
J=100
T=dim(Y)[2]
q=1
X=matrix(0,nrow=(I*J),ncol=I)
for (i in 1:I)
{
  X[((i-1)*J+1):(i*J),i]=rep(1,J)
}
gamma_0 = matrix(0, nrow = 1, ncol = q)
result=variable_selection(Y, X, gamma_0, k_max=1, 
n_iter=100, method="min", nb_rep_ss=1000, threshold=0.6)
estim_active = result$estim_active
eta_est = result$eta_est
gamma_est = result$gamma_est

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.