The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction

Introduction to MiscMetabar: an R package to facilitate visualization and reproducibility in metabarcoding analysis

Raison d’être

Quick overview

For an introduction to metabarcoding in R, Please visite the state of the field vignettes. The import, export and track vignette explains how import and export phyloseq object. Its also show how to summarize useful information (number of sequences, samples and clusters) accross bioinformatic pipelines.

If you are interested in ecological metrics, see the vignettes describing alpha-diversity and beta-diversity analysis. The vignette filter taxa and samples describes some data-filtering processes using MiscMetabar and the reclustering tutorial introduces the different way of clustering already-clustered OTU/ASV. The vignette tengeler explore the dataset from Tengeler et al. (2020) using some MiscMetabar functions.

For developers, I also wrote a vignette describing som rules of codes.

Summarize a physeq object

library("MiscMetabar")
library("phyloseq")
library("magrittr")
data("data_fungi")
summary_plot_pq(data_fungi)

Create an interactive table of the tax_table

data("GlobalPatterns", package = "phyloseq")
tax_datatable(subset_taxa(
  GlobalPatterns,
  rowSums(GlobalPatterns@otu_table) > 100000
))

Sankey diagram of the tax_table

gp <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
sankey_pq(gp, taxa = c(1:5))

Upset plot for visualize distribution of taxa in function of samples variables

upset_pq(gp, "SampleType", taxa = "Class")

References

Tengeler, A.C., Dam, S.A., Wiesmann, M. et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 8, 44 (2020). https://doi.org/10.1186/s40168-020-00816-x

Session inform

sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Debian GNU/Linux 12 (bookworm)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
#> 
#> locale:
#>  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
#>  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Europe/Paris
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] magrittr_2.0.3     MiscMetabar_0.10.1 purrr_1.0.2        dplyr_1.1.4       
#> [5] dada2_1.32.0       Rcpp_1.0.13        ggplot2_3.5.1      phyloseq_1.48.0   
#> 
#> loaded via a namespace (and not attached):
#>   [1] bitops_1.0-9                deldir_2.0-4               
#>   [3] permute_0.9-7               rlang_1.1.4                
#>   [5] ade4_1.7-22                 matrixStats_1.4.1          
#>   [7] compiler_4.4.1              mgcv_1.9-1                 
#>   [9] png_0.1-8                   vctrs_0.6.5                
#>  [11] reshape2_1.4.4              stringr_1.5.1              
#>  [13] pwalign_1.0.0               pkgconfig_2.0.3            
#>  [15] crayon_1.5.3                fastmap_1.2.0              
#>  [17] XVector_0.44.0              labeling_0.4.3             
#>  [19] utf8_1.2.4                  Rsamtools_2.20.0           
#>  [21] rmarkdown_2.28              UCSC.utils_1.0.0           
#>  [23] xfun_0.48                   zlibbioc_1.50.0            
#>  [25] cachem_1.1.0                GenomeInfoDb_1.40.1        
#>  [27] jsonlite_1.8.9              biomformat_1.32.0          
#>  [29] highr_0.11                  rhdf5filters_1.16.0        
#>  [31] DelayedArray_0.30.1         Rhdf5lib_1.26.0            
#>  [33] BiocParallel_1.38.0         jpeg_0.1-10                
#>  [35] parallel_4.4.1              cluster_2.1.6              
#>  [37] R6_2.5.1                    bslib_0.8.0                
#>  [39] stringi_1.8.4               RColorBrewer_1.1-3         
#>  [41] ComplexUpset_1.3.3          GenomicRanges_1.56.1       
#>  [43] jquerylib_0.1.4             SummarizedExperiment_1.34.0
#>  [45] iterators_1.0.14            knitr_1.48                 
#>  [47] IRanges_2.38.1              Matrix_1.7-0               
#>  [49] splines_4.4.1               igraph_2.0.3               
#>  [51] tidyselect_1.2.1            rstudioapi_0.16.0          
#>  [53] abind_1.4-8                 yaml_2.3.10                
#>  [55] vegan_2.6-8                 codetools_0.2-20           
#>  [57] hwriter_1.3.2.1             lattice_0.22-6             
#>  [59] tibble_3.2.1                plyr_1.8.9                 
#>  [61] Biobase_2.64.0              withr_3.0.1                
#>  [63] ShortRead_1.62.0            evaluate_1.0.0             
#>  [65] survival_3.7-0              RcppParallel_5.1.9         
#>  [67] Biostrings_2.72.1           pillar_1.9.0               
#>  [69] MatrixGenerics_1.16.0       DT_0.33                    
#>  [71] foreach_1.5.2               stats4_4.4.1               
#>  [73] generics_0.1.3              S4Vectors_0.42.1           
#>  [75] munsell_0.5.1               scales_1.3.0               
#>  [77] glue_1.8.0                  tools_4.4.1                
#>  [79] interp_1.1-6                data.table_1.16.0          
#>  [81] GenomicAlignments_1.40.0    rhdf5_2.48.0               
#>  [83] grid_4.4.1                  tidyr_1.3.1                
#>  [85] ape_5.8                     crosstalk_1.2.1            
#>  [87] latticeExtra_0.6-30         colorspace_2.1-1           
#>  [89] patchwork_1.3.0             networkD3_0.4              
#>  [91] nlme_3.1-166                GenomeInfoDbData_1.2.12    
#>  [93] cli_3.6.3                   fansi_1.0.6                
#>  [95] S4Arrays_1.4.1              gtable_0.3.5               
#>  [97] sass_0.4.9                  digest_0.6.37              
#>  [99] BiocGenerics_0.50.0         SparseArray_1.4.8          
#> [101] htmlwidgets_1.6.4           farver_2.1.2               
#> [103] htmltools_0.5.8.1           multtest_2.60.0            
#> [105] lifecycle_1.0.4             httr_1.4.7                 
#> [107] MASS_7.3-61

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.