The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The minTriadicClosure()
function defines a smoothed
triadic closure statistic for use in LOLOG models. It counts how many
nodes are part of at least k
closed triangles, using a
sigmoid function for smoothing.
This statistic can be added to LOLOG model formulas. Below is an example using a small toy network.
# Load required libraries
library(MinTriadic)
library(lolog)
library(network)
# Register the triadic change statistic
registerMinTriadicClosure()
# Load the Lazega collaboration network
data(lazega, package = "lolog")
# Fit LOLOG model with edges and minTriadicClosure
model <- lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), verbose = FALSE)
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## Error in solve.default(var(auxStats)) :
## Lapack routine dgesv: system is exactly singular: U[2,2] = 0
## Warning in lolog(lazega ~ edges + minTriadicClosure(k = 2, alpha = 1.5), :
## Singular statistic covariance matrix. Using diagnoal.
## observed_statistics theta se pvalue
## edges 115 2.929975 0.7146951 0
## minTriadicClosure 28 70.941143 5.4321625 0
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.