The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

MTE: Maximum Tangent Likelihood Estimation

Overview

The package provides several robust estimation methods for linear regression under both fixed and high dimesional settings. The methods include Maximum Tangent Likelihood Estimator (MTE and MTElasso) (Qin et al., 2017+), Least Absolute Deviance Estimator (LAD and LADlasso) and Huber estimator (huber.reg and huber.lasso).

Installation

devtools::install_github("shaobo-li/MTE")

Example

library(MTE)
set.seed(2017)
n=200; d=500
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, d-6))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
output.MTELasso=MTElasso(X, y, p=2, t=0.01)
beta.est=output.MTELasso$beta

References

Qin, Y., Li, S., Li, Y., & Yu, Y. (2017). Penalized maximum tangent likelihood estimation and robust variable selection. arXiv:1708.05439.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.