The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Mass Transportation Distance Rank Histogram
Version: 0.1.0
Author: Didem Sari<dsari@iastate.edu>, Sarah M. Ryan <smryan@iastate.edu>
Maintainer: Didem Sari <dsari@iastate.edu>
Description: The Mass Transportation Distance rank histogram was developed to assess the reliability of scenarios with equal or different probabilities of occurrence <doi:10.1002/we.1872>.
License: GPL-2
LazyData: TRUE
NeedsCompilation: no
Packaged: 2016-12-16 22:48:57 UTC; muhammet
Repository: CRAN
Date/Publication: 2016-12-17 00:31:52

Wind power scenarios generated by epi-spline approximation

Description

This data set provides 24-hour wind power scenarios, each with a different probability, and observations for 345 instances (days)

Usage

data("EPI")

Format

A list containing wind power scenarios for 345 days, where each day includes 27 scenarios, their corresponding probabilities, and one observation of dimension 24, representing hourly values.

References

[2]D. Sari, S.Ryan. Reliability of wind power scenarios and stochastic unit commitment cost. Under review.

Examples

data(EPI)
epi_ranks <- MTDrh(EPI$scen,EPI$obs,EPI$prob,FALSE,FALSE)

#with different probabilities;
s.prob<-array(rep(c(0.7,rep(0.3/26,times=26)),times=345),dim=c(27,345))
epi_ranks <- MTDrh(EPI$scen,EPI$obs,s.prob,FALSE,FALSE)
  
#or
s.prob2<-array(rep(c(0.35,rep(0.3/25,times=25),0.35),times=345),dim=c(27,345))
epi_ranks <- MTDrh(EPI$scen,EPI$obs,s.prob2,FALSE,FALSE)
  

Construct Mass Transportation Distance Rank Histogram

Description

Constructs a mass transportation distance rank histogram to assess the reliability of probabilistic scenarios using observations for a set of instances [1].

Usage

MTDrh(scenarios, observation, prob = NULL, debias = FALSE, transformation = FALSE)

Arguments

scenarios

A dataset that contains scenarios. It should be a 3 dimensional array: (dimension of each scenario)x(number of scenarios per instance)x(number of instances)

observation

A dataset that contains observations. The dimension of each observation and the number of instances should match the dimension and number of instances of the scenarios. It should be a matrix:

(dimension of each observation)x(number of instances)

prob

A dataset that contains the probability of each scenario for each instance. If prob is not given, the default that the scenarios have equal probabilities. It should be a matrix: (number of scenarios)x(number of instances)

debias

If debias=TRUE, the data are debiased for each instance [1].

transformation

If transformation=TRUE, the data are transformed with Mahalanobis transformation for each instance [1].

Value

Returns an array of mass transportation ranks and a histogram plot.

Author(s)

Didem Sari, Sarah M. Ryan

References

[1] D. Sari, Y. Lee, S. Ryan, D. Woodruff. Statistical metrics for assessing the quality of wind power scenarios for stochastic unit commitment. Wind Energy 19, 873-893 (2016) doi:10.1002/we.1872

Examples

#Generate 1000 instances of 10 scenarios and observation with dimension 8 
#from the same normal distribution.

scen <- array(rnorm(8*10*1000,0,1),dim=c(8,10,1000)) 
obs <- array(rnorm(8*1000,0,1),dim=c(8,1000))
ranks <- MTDrh(scen,obs,prob=NULL,debias=FALSE,transformation=FALSE)

#Generate 1000 instances of 27 scenarios and observation with dimension 8 
#from AR(1) processes. The marginal distributions of the scenarios and observation
#are the same but the autocorrelation levels are different. The Mahalanobis
#transformation is applied. See Figure 8 [1].

scen <- array(arima.sim(list(order=c(1,0,0),ar=0.10),n=8*27*1000,sd=1),dim=c(8,27,1000))
obs <- array(arima.sim(list(order=c(1,0,0),ar=0.90),n=8*1000,sd=0.45),dim=c(8,1000))
ranks<-MTDrh(scen,obs,prob=NULL,debias=FALSE,transformation=TRUE)
hist(ranks, breaks=c(0:28),xlab="bin",ylab="frequency",col="gray",main="MTD rh")

#Generate 1000 instances of 27 scenarios that have heterogeneous autocorrelation
#levels and corresponding observations with autocorrelation different
#from the scenarios.
#The marginal standard deviations of scenarios and observation match.  See Figure 9 [1]

scen1 <- array(arima.sim(list(order=c(1,0,0),ar=0.10),n=8*10*1000,sd=1),dim=c(8,10,1000))
scen2 <- array(arima.sim(list(order=c(1,0,0),ar=0.80),n=8*17*1000,sd=0.64),dim=c(8,17,1000))
scen <- array(NA,dim=c(8,27,1000))
scen[,1:10,]<-scen1
scen[,11:27,]<-scen2
obs <- array(arima.sim(list(order=c(1,0,0),ar=0.50),n=8*1000,sd=0.86),dim=c(8,1000))
ranks<-MTDrh(scen,obs,prob=NULL,debias=FALSE,transformation=TRUE)
hist(ranks, breaks=c(0:28),xlab="bin",ylab="frequency",col="gray",main="MTD rh")


Wind power scenarios generated by Quantile Regression with Gaussian copula approach

Description

This data set provides 24-hour wind power scenarios and observations for 345 instances (days)

Usage

data("QR")

Format

A list containing wind power scenarios for 345 days, where each day includes 27 scenarios and one observation of dimension 24, representing hourly values.

References

[2]D. Sari, S.Ryan. Reliability of wind power scenarios and stochastic unit commitment cost. Under review.

Examples

data(QR)
qr_ranks <- MTDrh(QR$scen,QR$obs,NULL,FALSE,FALSE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.