The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

MLGL: Multi-Layer Group-Lasso

It implements a new procedure of variable selection in the context of redundancy between explanatory variables, which holds true with high dimensional data (Grimonprez et al. (2023) <doi:10.18637/jss.v106.i03>).

Version: 1.0.0
Imports: gglasso, MASS, Matrix, fastcluster, FactoMineR, parallelDist
Published: 2023-03-15
DOI: 10.32614/CRAN.package.MLGL
Author: Quentin Grimonprez [aut, cre], Samuel Blanck [ctb], Alain Celisse [ths], Guillemette Marot [ths], Yi Yang [ctb], Hui Zou [ctb]
Maintainer: Quentin Grimonprez <quentingrim at yahoo.fr>
BugReports: https://github.com/modal-inria/MLGL/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Copyright: Inria
NeedsCompilation: no
Citation: MLGL citation info
Materials: NEWS
CRAN checks: MLGL results

Documentation:

Reference manual: MLGL.pdf

Downloads:

Package source: MLGL_1.0.0.tar.gz
Windows binaries: r-devel: MLGL_1.0.0.zip, r-release: MLGL_1.0.0.zip, r-oldrel: MLGL_1.0.0.zip
macOS binaries: r-release (arm64): MLGL_1.0.0.tgz, r-oldrel (arm64): MLGL_1.0.0.tgz, r-release (x86_64): MLGL_1.0.0.tgz, r-oldrel (x86_64): MLGL_1.0.0.tgz
Old sources: MLGL archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=MLGL to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.