The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

MLBC

MLBC is an R package for correcting bias and performing valid inference in regressions that include variables generated by AI/ML methods. The bias-correction methods are described in Battaglia, Christensen, Hansen & Sacher (2024).

Requirements and installation

MLBC runs on R 3.5 or above and uses TMB. It can be installed from CRAN by running

To install the package, run

pip install ValidMLInference

in your R console.

Using ValidMLInference

To get started, we recommend looking at the following examples and resources: 1. Remote Work: This notebook estimates the association between working from home and salaries using real-world job postings data (Hansen et al., 2023). It illustrates how the functions ols_bca, ols_bcm and one_step can be used to correct bias from regressing on AI/ML-generated labels. The notebook reproduces results from Table 1 of Battaglia, Christensen, Hansen & Sacher (2024). 2. Topic Models: This notebook estimates the association between CEO time allocation and firm performance (Bandiera et al. 2020). It illustrates how the functions ols_bca_topic and ols_bcm_topic can be used to correct bias from estimated topic model shares. The notebook reproduces results from Table 2 of Battaglia, Christensen, Hansen & Sacher (2024). 3. Synthetic Example: A synthetic example comparing the performance of different bias-correction methods in the context of AI/ML-generated labels. 4. Manual: A detailed reference describing all available functions, optional arguments, and usage tips.

Quickstart

Code below compares coefficients obtained by ordinary least squares methods and those obtained by the one_step approach, when used on variables subject to classification error. We can see that the 95% confidence interval generated by one_step contains the true parameter of 2, whereas the standard ols approach doesn’t.

library(MLBC)

# Generate synthetic data with mislabeling
n <- 1000
true_effect <- 2.0

# True treatment assignment
X_true <- rbinom(n, 1, 0.5)

# Observed (mislabeled) treatment with 20% error rate
mislabel_prob <- 0.2
X_obs <- X_true
mislabel_mask <- rbinom(n, 1, mislabel_prob) == 1
X_obs[mislabel_mask] <- 1 - X_obs[mislabel_mask]

# Generate outcome with true treatment effect
Y <- 1.0 + true_effect * X_true + rnorm(n, 0, 1)

# Create DataFrame
data <- data.frame(Y = Y, X_obs = X_obs)

# Naive OLS using mislabeled data
ols_result <- ols(Y ~ X_obs, data = data)
print("OLS Results (using mislabeled data):")
#> [1] "OLS Results (using mislabeled data):"
print(summary(ols_result))
#> 
#> MLBC Model Summary
#> ==================
#> 
#> Formula:  Y ~ Beta_0 + Beta_1 * X_obs 
#> 
#> 
#> Coefficients:
#> 
#>        Estimate Std.Error z.value Pr(>|z|) Signif           95% CI
#> Beta_0   1.3346    0.0568 23.4937  < 2e-16    *** [1.2233, 1.4459]
#> Beta_1   1.2471    0.0809 15.4229  < 2e-16    *** [1.0886, 1.4056]
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# One-step estimator that corrects for mislabeling
one_step_result <- one_step(Y ~ X_obs, data = data)
print("\nOne-Step Results (correcting for mislabeling):")
#> [1] "\nOne-Step Results (correcting for mislabeling):"
print(summary(one_step_result))
#> 
#> MLBC Model Summary
#> ==================
#> 
#> Formula:  Y ~ Beta_0 + Beta_1 * X_obs 
#> 
#> Number of observations: 1000 
#> Log-likelihood: -2344.289 
#> 
#> Coefficients:
#> 
#>        Estimate Std.Error z.value Pr(>|z|) Signif           95% CI
#> Beta_0   0.9443    0.0852 11.0868  < 2e-16    *** [0.7774, 1.1113]
#> Beta_1   1.9803    0.1009 19.6202  < 2e-16    *** [1.7825, 2.1781]
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Extract confidence intervals
ols_ci <- confint(ols_result)["X_obs", ]
one_step_ci <- confint(one_step_result)["X_obs", ]

cat("\nTrue treatment effect:", true_effect, "\n")
#> 
#> True treatment effect: 2
cat("OLS 95% CI contains true value:", 
    ols_ci[1] <= true_effect && true_effect <= ols_ci[2], "\n")
#> OLS 95% CI contains true value: FALSE
cat("One-step 95% CI contains true value:", 
    one_step_ci[1] <= true_effect && true_effect <= one_step_ci[2], "\n")
#> One-step 95% CI contains true value: TRUE

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.