The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
MLBC
is an R package for correcting bias and performing
valid inference in regressions that include variables generated by AI/ML
methods. The bias-correction methods are described in Battaglia, Christensen, Hansen
& Sacher (2024).
MLBC
runs on R 3.5 or above and uses TMB
.
It can be installed from CRAN by running
To install the package, run
pip install ValidMLInference
in your R console.
To get started, we recommend looking at the following examples and
resources: 1. Remote
Work: This notebook estimates the association between
working from home and salaries using real-world job postings data (Hansen et al.,
2023). It illustrates how the functions ols_bca
,
ols_bcm
and one_step
can be used to correct
bias from regressing on AI/ML-generated labels. The notebook reproduces
results from Table 1 of Battaglia, Christensen, Hansen
& Sacher (2024). 2. Topic
Models: This notebook estimates the association between CEO
time allocation and firm performance (Bandiera et al. 2020). It
illustrates how the functions ols_bca_topic
and
ols_bcm_topic
can be used to correct bias from estimated
topic model shares. The notebook reproduces results from Table 2 of Battaglia, Christensen, Hansen
& Sacher (2024). 3. Synthetic
Example: A synthetic example comparing the performance of
different bias-correction methods in the context of AI/ML-generated
labels. 4. Manual:
A detailed reference describing all available functions, optional
arguments, and usage tips.
Code below compares coefficients obtained by ordinary least squares
methods and those obtained by the one_step
approach, when
used on variables subject to classification error. We can see that the
95% confidence interval generated by one_step
contains the
true parameter of 2, whereas the standard ols approach doesn’t.
library(MLBC)
# Generate synthetic data with mislabeling
<- 1000
n <- 2.0
true_effect
# True treatment assignment
<- rbinom(n, 1, 0.5)
X_true
# Observed (mislabeled) treatment with 20% error rate
<- 0.2
mislabel_prob <- X_true
X_obs <- rbinom(n, 1, mislabel_prob) == 1
mislabel_mask <- 1 - X_obs[mislabel_mask]
X_obs[mislabel_mask]
# Generate outcome with true treatment effect
<- 1.0 + true_effect * X_true + rnorm(n, 0, 1)
Y
# Create DataFrame
<- data.frame(Y = Y, X_obs = X_obs)
data
# Naive OLS using mislabeled data
<- ols(Y ~ X_obs, data = data)
ols_result print("OLS Results (using mislabeled data):")
#> [1] "OLS Results (using mislabeled data):"
print(summary(ols_result))
#>
#> MLBC Model Summary
#> ==================
#>
#> Formula: Y ~ Beta_0 + Beta_1 * X_obs
#>
#>
#> Coefficients:
#>
#> Estimate Std.Error z.value Pr(>|z|) Signif 95% CI
#> Beta_0 1.3346 0.0568 23.4937 < 2e-16 *** [1.2233, 1.4459]
#> Beta_1 1.2471 0.0809 15.4229 < 2e-16 *** [1.0886, 1.4056]
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# One-step estimator that corrects for mislabeling
<- one_step(Y ~ X_obs, data = data)
one_step_result print("\nOne-Step Results (correcting for mislabeling):")
#> [1] "\nOne-Step Results (correcting for mislabeling):"
print(summary(one_step_result))
#>
#> MLBC Model Summary
#> ==================
#>
#> Formula: Y ~ Beta_0 + Beta_1 * X_obs
#>
#> Number of observations: 1000
#> Log-likelihood: -2344.289
#>
#> Coefficients:
#>
#> Estimate Std.Error z.value Pr(>|z|) Signif 95% CI
#> Beta_0 0.9443 0.0852 11.0868 < 2e-16 *** [0.7774, 1.1113]
#> Beta_1 1.9803 0.1009 19.6202 < 2e-16 *** [1.7825, 2.1781]
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Extract confidence intervals
<- confint(ols_result)["X_obs", ]
ols_ci <- confint(one_step_result)["X_obs", ]
one_step_ci
cat("\nTrue treatment effect:", true_effect, "\n")
#>
#> True treatment effect: 2
cat("OLS 95% CI contains true value:",
1] <= true_effect && true_effect <= ols_ci[2], "\n")
ols_ci[#> OLS 95% CI contains true value: FALSE
cat("One-step 95% CI contains true value:",
1] <= true_effect && true_effect <= one_step_ci[2], "\n")
one_step_ci[#> One-step 95% CI contains true value: TRUE
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.