The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(LogicForest)
library(data.table)
#> Warning: package 'data.table' was built under R version 4.2.3
library(LogicReg)
#> Warning: package 'LogicReg' was built under R version 4.2.3
#> Loading required package: survival
load(system.file("data", "LF.data.rda", package="LogicForest"))
data(LF.data)
#Set using annealing parameters using the logreg.anneal.control
#function from LogicReg package
newanneal<-logreg.anneal.control(start=1, end=-2, iter=2500)
#typically more than 2500 iterations (iter>25000) would be used for
#the annealing algorithm. A typical forest also contains at
#least 100 trees. These parameters were set to allow for faster
#run times
#The data set LF.data contains 50 binary predictors and a binary
#response Ybin
LF.fit1<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20, anneal.params=newanneal)
print(LF.fit1)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#>
#> 5 most important predictors
#>
#> Top 5 Predictors Normalized Predictor Importance Frequency
#> 1 X5 1 20
#> 2 X4 0.6592 19
#> 3 X9 0.0059 1
#> 4 X2 0 <NA>
#> 5 X3 0 <NA>
#>
#> 5 most important interactions
#>
#> Top 5 Interactions Normalized Interaction Importance Frequency
#> 1 X4 & X5 1 18
#> 2 X5 0.0544 1
#> 3 !X1 & X4 & X5 0.0221 1
#> 4 X5 & !X42 0.0161 1
#> 5 X5 & !X9 0.0131 1
predict(LF.fit1)
#> OOB Predicted values
#>
#> [1] 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0
#> [38] 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0
#> [75] 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
#> [112] 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0
#> [149] 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
#> [186] 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0
#>
#> Proportion of OOB trees that predict 1
#> [1] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000
#> [8] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.0000000
#> [15] 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000
#> [22] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 1.0000000
#> [29] 0.8333333 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#> [36] 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [43] 0.1428571 1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [50] 0.8750000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [57] 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.2500000 0.8750000
#> [64] 0.0000000 1.0000000 0.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [71] 1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#> [78] 1.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000
#> [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#> [92] 0.0000000 1.0000000 0.9090909 1.0000000 1.0000000 0.0000000 0.8333333
#> [99] 0.1111111 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
#> [106] 0.0000000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [113] 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000
#> [120] 0.0000000 0.3333333 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [127] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [134] 1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 1.0000000 1.0000000
#> [141] 0.0000000 0.1111111 1.0000000 0.9230769 1.0000000 1.0000000 0.0000000
#> [148] 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 1.0000000
#> [155] 0.9000000 0.1111111 0.2000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [162] 0.0000000 0.0000000 0.1111111 0.0000000 0.0000000 0.0000000 1.0000000
#> [169] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.2000000
#> [176] 0.0000000 1.0000000 0.0000000 0.0000000 0.1000000 0.0000000 1.0000000
#> [183] 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
#> [190] 1.0000000 1.0000000 0.0000000 1.0000000 0.8888889 0.0000000 0.0000000
#> [197] 1.0000000 1.0000000 0.0000000 0.0000000
#Changing print parameters
LF.fit2<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20,
anneal.params=newanneal, norm=TRUE, numout=10)
print(LF.fit2)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#>
#> 10 most important predictors
#>
#> Top 10 Predictors Normalized Predictor Importance Frequency
#> 1 X5 1 19
#> 2 X4 0.9856 19
#> 3 X1 0 <NA>
#> 4 X2 0 <NA>
#> 5 X3 0 <NA>
#> 6 X6 0 <NA>
#> 7 X7 0 <NA>
#> 8 X8 0 <NA>
#> 9 X9 0 <NA>
#> 10 X10 0 <NA>
#>
#> 10 most important interactions
#>
#> Top 10 Interactions Normalized Interaction Importance Frequency
#> 1 X4 & X5 1 18
#> 2 X4 0.0467 1
#> 3 X5 0.0435 1
#> 4 <NA> <NA> <NA>
#> 5 <NA> <NA> <NA>
#> 6 <NA> <NA> <NA>
#> 7 <NA> <NA> <NA>
#> 8 <NA> <NA> <NA>
#> 9 <NA> <NA> <NA>
#> 10 <NA> <NA> <NA>
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.