The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction to Logic Forest

library(LogicForest)
library(data.table)
#> Warning: package 'data.table' was built under R version 4.2.3
library(LogicReg)
#> Warning: package 'LogicReg' was built under R version 4.2.3
#> Loading required package: survival

load(system.file("data", "LF.data.rda", package="LogicForest"))
data(LF.data)

#Set using annealing parameters using the logreg.anneal.control 
#function from LogicReg package

newanneal<-logreg.anneal.control(start=1, end=-2, iter=2500)

#typically more than 2500 iterations (iter>25000) would be used for 
#the annealing algorithm.  A typical forest also contains at 
#least 100 trees.  These parameters were set to allow for faster
#run times

#The data set LF.data contains 50 binary predictors and a binary
#response Ybin
LF.fit1<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20, anneal.params=newanneal)
print(LF.fit1)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#> 
#> 5 most important predictors 
#> 
#>     Top 5 Predictors   Normalized Predictor Importance   Frequency
#> 1   X5                 1                                 20       
#> 2   X4                 0.6592                            19       
#> 3   X9                 0.0059                            1        
#> 4   X2                 0                                 <NA>     
#> 5   X3                 0                                 <NA>     
#> 
#> 5 most important interactions 
#> 
#>     Top 5 Interactions   Normalized Interaction Importance   Frequency
#> 1   X4 & X5              1                                   18       
#> 2   X5                   0.0544                              1        
#> 3   !X1 & X4 & X5        0.0221                              1        
#> 4   X5 & !X42            0.0161                              1        
#> 5   X5 & !X9             0.0131                              1
predict(LF.fit1)
#> OOB Predicted values
#> 
#>   [1] 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0
#>  [38] 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0
#>  [75] 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
#> [112] 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0
#> [149] 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
#> [186] 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0
#> 
#> Proportion of OOB trees that predict 1
#>   [1] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000
#>   [8] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.0000000
#>  [15] 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000
#>  [22] 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 1.0000000
#>  [29] 0.8333333 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#>  [36] 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#>  [43] 0.1428571 1.0000000 0.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#>  [50] 0.8750000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#>  [57] 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.2500000 0.8750000
#>  [64] 0.0000000 1.0000000 0.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [71] 1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000
#>  [78] 1.0000000 0.0000000 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000
#>  [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
#>  [92] 0.0000000 1.0000000 0.9090909 1.0000000 1.0000000 0.0000000 0.8333333
#>  [99] 0.1111111 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
#> [106] 0.0000000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [113] 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000
#> [120] 0.0000000 0.3333333 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [127] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [134] 1.0000000 1.0000000 1.0000000 0.0000000 1.0000000 1.0000000 1.0000000
#> [141] 0.0000000 0.1111111 1.0000000 0.9230769 1.0000000 1.0000000 0.0000000
#> [148] 0.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000 1.0000000
#> [155] 0.9000000 0.1111111 0.2000000 0.0000000 1.0000000 0.0000000 1.0000000
#> [162] 0.0000000 0.0000000 0.1111111 0.0000000 0.0000000 0.0000000 1.0000000
#> [169] 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.2000000
#> [176] 0.0000000 1.0000000 0.0000000 0.0000000 0.1000000 0.0000000 1.0000000
#> [183] 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000
#> [190] 1.0000000 1.0000000 0.0000000 1.0000000 0.8888889 0.0000000 0.0000000
#> [197] 1.0000000 1.0000000 0.0000000 0.0000000

#Changing print parameters
LF.fit2<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20,
anneal.params=newanneal, norm=TRUE, numout=10)
print(LF.fit2)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#> 
#> 10 most important predictors 
#> 
#>      Top 10 Predictors   Normalized Predictor Importance   Frequency
#> 1    X5                  1                                 19       
#> 2    X4                  0.9856                            19       
#> 3    X1                  0                                 <NA>     
#> 4    X2                  0                                 <NA>     
#> 5    X3                  0                                 <NA>     
#> 6    X6                  0                                 <NA>     
#> 7    X7                  0                                 <NA>     
#> 8    X8                  0                                 <NA>     
#> 9    X9                  0                                 <NA>     
#> 10   X10                 0                                 <NA>     
#> 
#> 10 most important interactions 
#> 
#>      Top 10 Interactions   Normalized Interaction Importance   Frequency
#> 1    X4 & X5               1                                   18       
#> 2    X4                    0.0467                              1        
#> 3    X5                    0.0435                              1        
#> 4    <NA>                  <NA>                                <NA>     
#> 5    <NA>                  <NA>                                <NA>     
#> 6    <NA>                  <NA>                                <NA>     
#> 7    <NA>                  <NA>                                <NA>     
#> 8    <NA>                  <NA>                                <NA>     
#> 9    <NA>                  <NA>                                <NA>     
#> 10   <NA>                  <NA>                                <NA>

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.