The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

SMRbyStrata

When stratifying a cohort, it is generally desirable to calculate SMRs for different levels of a strata (such as a time-dependent exposure).

LTASR provides options to stratify a cohort by a fixed strata defined within the person file, or by a time-dependent exposure variable with information found in a separate history file.

For example, below will strata the example person and history file, included in LTASR, by a cumulative exposure variable exposure_level:

#Define exposure cutpoints
exp <- exp_strata(var = 'exposure_level',
                   cutpt = c(-Inf, 0, 10000, 20000, Inf),
                   lag = 10)

#Read in and format person file
person <- person_example %>%
  mutate(dob = as.Date(dob, format='%m/%d/%Y'),
         pybegin = as.Date(pybegin, format='%m/%d/%Y'),
         dlo = as.Date(dlo, format='%m/%d/%Y'))

#Read in and format history file
history <- history_example %>%
  mutate(begin_dt = as.Date(begin_dt, format='%m/%d/%Y'),
         end_dt = as.Date(end_dt, format='%m/%d/%Y')) 

#Stratify cohort
py_table <- get_table_history(persondf = person,
                              rateobj = us_119ucod_recent,
                              historydf = history,
                              exps = list(exp))

This creates the following table (top 6 rows):

ageCat CPCat gender race exposure_levelCat pdays _o55 _o52
[15,20) [1970,1975) F W (-Inf,0] 746 1 0
[25,30) [1970,1975) M N (-Inf,0] 55 0 0
[25,30) [1970,1975) M W (-Inf,0] 1472 0 0
[25,30) [1975,1980) M W (-Inf,0] 323 0 0
[30,35) [1970,1975) M N (-Inf,0] 1023 0 0
[30,35) [1975,1980) M N (-Inf,0] 803 0 0

smr_minor and smr_major will calculate SMRs for the entire cohort that is read in.

To calculate SMRs separately for each strata of exposure_levelCat, one option would be to create separate person-year tables for each level:

#Subset py_table to the highest exposed group
py_table_high <- py_table %>%
  filter(exposure_levelCat == '(2e+04, Inf]')

smr_minor_table_high <- smr_minor(py_table_high, us_119ucod_recent)
smr_major_table_high <- smr_major(smr_minor_table_high, us_119ucod_recent)
minor Description observed expected smr lower upper
52 Other diseases of the nervous system and sense org 0 0.01 0 0 368.89
55 Ischemic heart disease 0 0.06 0 0 61.48
major Description observed expected smr lower upper
16 Diseases of the heart (Major) 0 0.06 0 0 61.48

These results can be saved through repeated calls to write_csv(). This can be tedious for strata with many levels.

Alternatively, the below code will loop through each level of the a variable (defined by var) and outputs results into an excel file (using the writexl library) with a separate tab for each strata level:

#Define the name of the person year table (py_table)
#and the variable to calcualte SMRs accross
pyt <- py_table
var <- 'exposure_levelCat'

#Loop through levels of the above variable
lvls <- unique(pyt[var][[1]])
smr_minors <- 
  map(lvls,
    ~ {
      pyt %>%
        filter(!!sym(var) == .x) %>%
        smr_minor(us_119ucod_recent)
    }) %>%
  setNames(lvls)

smr_majors <- 
  map(smr_minors,
      ~ smr_major(., us_119ucod_recent))%>%
  setNames(names(smr_minors))

#Adjust names of sheets
names(smr_minors) <- str_replace_all(names(smr_minors), "\\[|\\]", "_")
names(smr_majors) <- str_replace_all(names(smr_majors), "\\[|\\]", "_")

#Save results 
library(writexl)
write_xlsx(smr_minors, 'C:/SMR_Minors_by_exp.xlsx')
write_xlsx(smr_majors, 'C:/SMR_Majors_by_exp.xlsx')

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.