The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
As an introduction, lets start with one way ANOVA. Here three random variables following a normal distribution with a common standard deviation are created. For this test, the null hypothesis is
\[ H_{0}: \mu_0 = \mu_1 = \mu_2 \]
library(LRTesteR)
set.seed(123)
x <- c(
rnorm(n = 50, mean = 1, sd = 1),
rnorm(n = 50, mean = 3, sd = 1),
rnorm(n = 50, mean = 5, sd = 1)
)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gaussian_mu_one_way(x = x, fctr = fctr, conf.level = 0.95)
#> Log Likelihood Statistic: 194.76
#> p value: 0
#> Confidence Level Of Set: 95%
#> Individual Confidence Level: 98.3%
#> Confidence Interval For Group 1: (0.715, 1.354)
#> Confidence Interval For Group 2: (2.834, 3.459)
#> Confidence Interval For Group 3: (4.405, 5.087)
One-way analysis without assuming the data is normally distributed.
empirical_mu_one_way(x = x, fctr = fctr, conf.level = 0.95)
#> Log Likelihood Statistic: 600
#> p value: 0
#> Confidence Level Of Set: 95%
#> Individual Confidence Level: 98.3%
#> Confidence Interval For Group 1: (0.724, 1.355)
#> Confidence Interval For Group 2: (2.829, 3.457)
#> Confidence Interval For Group 3: (4.426, 5.099)
Here two random variables following a Cauchy distribution with a common location and different scales are created. For this test, the null hypothesis is
\[ H_{0}: \gamma_0 = \gamma_1 \]
set.seed(1)
x <- c(rcauchy(n = 50, location = 2, scale = 1), rcauchy(n = 50, location = 2, scale = 3))
fctr <- c(rep(1, 50), rep(2, 50))
fctr <- factor(fctr, levels = c("1", "2"))
cauchy_scale_one_way(x = x, fctr = fctr, conf.level = 0.95)
#> Log Likelihood Statistic: 18.2
#> p value: 0
#> Confidence Level Of Set: 95%
#> Individual Confidence Level: 97.5%
#> Confidence Interval For Group 1: (0.715, 1.71)
#> Confidence Interval For Group 2: (2.388, 5.612)
Here three poisson random variables with different lambdas are created. The null hypothesis is
\[ H_{0}: \lambda_0 = \lambda_1 = \lambda_2 \]
set.seed(1)
x <- c(rpois(n = 50, lambda = 1), rpois(n = 50, lambda = 2), rpois(n = 50, lambda = 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
poisson_lambda_one_way(x = x, fctr = fctr, conf.level = 0.95)
#> Log Likelihood Statistic: 51.11
#> p value: 0
#> Confidence Level Of Set: 95%
#> Individual Confidence Level: 98.3%
#> Confidence Interval For Group 1: (0.765, 1.471)
#> Confidence Interval For Group 2: (1.541, 2.495)
#> Confidence Interval For Group 3: (2.541, 3.735)
All one way tests have a null hypothesis the groups share a common value of the parameter. The alternative is at least one group’s parameter is unequal to the others. If the test involves a nuisance parameter, it is assumed equal across groups for parametric tests. All functions apply the Bonferroni correction to the set of confidence intervals.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.