The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

LDATS: Latent Dirichlet Allocation Coupled with Time Series Analyses

Combines Latent Dirichlet Allocation (LDA) and Bayesian multinomial time series methods in a two-stage analysis to quantify dynamics in high-dimensional temporal data. LDA decomposes multivariate data into lower-dimension latent groupings, whose relative proportions are modeled using generalized Bayesian time series models that include abrupt changepoints and smooth dynamics. The methods are described in Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993>, Western and Kleykamp (2004) <doi:10.1093/pan/mph023>, Venables and Ripley (2002, ISBN-13:978-0387954578), and Christensen et al. (2018) <doi:10.1002/ecy.2373>.

Version: 0.3.0
Depends: R (≥ 3.5.0)
Imports: coda, digest, extraDistr, graphics, grDevices, lubridate, magrittr, memoise, methods, mvtnorm, nnet, progress, stats, topicmodels, viridis
Suggests: knitr, pkgdown, rmarkdown, testthat, vdiffr
Published: 2023-09-19
DOI: 10.32614/CRAN.package.LDATS
Author: Juniper L. Simonis ORCID iD [aut, cre], Erica M. Christensen ORCID iD [aut], David J. Harris ORCID iD [aut], Renata M. Diaz ORCID iD [aut], Hao Ye ORCID iD [aut], Ethan P. White ORCID iD [aut], S.K. Morgan Ernest ORCID iD [aut], Weecology [cph]
Maintainer: Juniper L. Simonis <juniper.simonis at weecology.org>
BugReports: https://github.com/weecology/LDATS/issues
License: MIT + file LICENSE
URL: https://weecology.github.io/LDATS/, https://github.com/weecology/LDATS
NeedsCompilation: no
SystemRequirements: gsl
Materials: README NEWS
CRAN checks: LDATS results

Documentation:

Reference manual: LDATS.pdf
Vignettes: LDATS Codebase (source, R code)
Comparison to Christensen et al. 2018 (source, R code)
Rodents Example (source, R code)

Downloads:

Package source: LDATS_0.3.0.tar.gz
Windows binaries: r-devel: LDATS_0.3.0.zip, r-release: LDATS_0.3.0.zip, r-oldrel: LDATS_0.3.0.zip
macOS binaries: r-release (arm64): LDATS_0.3.0.tgz, r-oldrel (arm64): LDATS_0.3.0.tgz, r-release (x86_64): LDATS_0.3.0.tgz, r-oldrel (x86_64): LDATS_0.3.0.tgz
Old sources: LDATS archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=LDATS to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.