The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

KrakenR

Introduction

The KrakenR package provides a user-friendly interface to the Kraken cryptocurrency exchange’s REST API. It allows R users to access real-time and historical market data, asset information, and exchange metrics, making it a valuable tool for financial analysts, traders, and researchers interested in the cryptocurrency markets.

This vignette will introduce key functionalities of the package, showcasing how to use the API functions to retrieve market data and more.

Installation

You can install KrakenR directly from GitHub:

# Install the development version from GitHub
devtools::install_github("nathanael-g-durst/KrakenR")
# Load the package
library(KrakenR)

Overview of Available Functions

The package includes several key functions that allow users to fetch various types of data from the Kraken exchange:

Example Workflow

This section provides a detailed walkthrough using KrakenR to access Kraken market data.

1. Fetching Asset Information

To retrieve detailed information about all available assets or specific ones:

# Fetch all available assets
assets_all <- getAssets()

# Fetch data for specific assets
assets_specific <- getAssets(c("BTC", "ETH", "ADA"))

The getAssets() function returns a data frame containing asset information, such as the asset class, decimals, and status.

AssetID aclass altname decimals display_decimals status Asset collateral_value
1INCH currency 1INCH 10 5 enabled 1INCH NA
AAVE currency AAVE 10 5 enabled AAVE NA
ACA currency ACA 10 5 enabled ACA NA
ACH currency ACH 10 5 enabled ACH NA
ADA currency ADA 8 6 enabled ADA 0.9
ADA.S currency ADA.S 8 6 enabled ADA.S NA

2. Retrieving Order Book Data

You can use getOB() to fetch order book data for a specific trading pair:

# Fetch order book data for ADAEUR pair
order_book <- getOB("ADAEUR")

# Fetch order book data with a limit on the number of orders
order_book_limited <- getOB("ADAEUR", count = 3)

The output includes bid and ask orders, sorted by price, and can be used for market analysis.

Bid_Price Bid_Volume Bid_Timestamp Order_Type Ask_Price Ask_Volume Ask_Timestamp
0.334025 11048.20 2024-10-21 23:06:16 Bid NA NA NA
0.334033 13820.01 2024-10-21 23:06:42 Bid NA NA NA
0.334050 50554.76 2024-10-21 23:06:46 Bid NA NA NA
NA NA NA Ask 0.334051 83313.603 2024-10-21 23:05:49
NA NA NA Ask 0.334321 9679.675 2024-10-21 23:06:48
NA NA NA Ask 0.334338 362.802 2024-10-21 23:06:31

3. Fetching OHLC Data

The getOHLC() function allows you to retrieve OHLC (Open, High, Low, Close) data for a given trading pair at various time intervals:

# Fetch 1-minute interval OHLC data for ADAEUR
ohlc_data <- getOHLC("ADAEUR", interval = 1)

# Fetch 4-hour interval data
ohlc_data_4h <- getOHLC("ADAEUR", interval = 240)

This function is useful for technical analysis and charting.

Time Open High Low Close VWAP Volume Count
2024-06-24 02:00:00 0.356047 0.356286 0.351564 0.355843 0.354318 104656.8 83
2024-06-24 06:00:00 0.354037 0.354386 0.345861 0.348543 0.348949 370810.1 1082
2024-06-24 10:00:00 0.348606 0.352655 0.337538 0.346832 0.345331 918418.7 777
2024-06-24 14:00:00 0.346943 0.353498 0.345000 0.345000 0.348788 248185.1 287
2024-06-24 18:00:00 0.344991 0.347858 0.341000 0.342916 0.343552 846399.9 413
2024-06-24 22:00:00 0.343516 0.352510 0.338250 0.352000 0.347171 650738.7 375

4. Getting Asset Pair Information

To retrieve tradable asset pairs and their details:

# Fetch all available asset pairs
pairs_all <- getPairs()

# Fetch information for a specific pair
pair_info <- getPairs(c("ADAEUR", "BTCUSD"))

You can also filter by specific details such as leverage, fees, or margin.

Column Example
PairID 1INCHEUR
altname 1INCHEUR
wsname 1INCH/EUR
aclass_base currency
base 1INCH
aclass_quote currency
quote ZEUR
lot unit
cost_decimals 5
pair_decimals 3
lot_decimals 8
lot_multiplier 1
leverage_buy list(leverage_buy = list())
leverage_sell list(leverage_sell = list())
fees list(fees = c(0, 10000, 50000, 1e+05, 250000, 5e+05, 1e+06, 2500000, 5e+06, 1e+07, 0.4, 0.35, 0.24, 0.22, 0.2, 0.18, 0.16, 0.14, 0.12, 0.1))
fees_maker list(fees_maker = c(0, 10000, 50000, 1e+05, 250000, 5e+05, 1e+06, 2500000, 5e+06, 1e+07, 0.25, 0.2, 0.14, 0.12, 0.1, 0.08, 0.06, 0.04, 0.02, 0))
fee_volume_currency ZUSD
margin_call 80
margin_stop 40
ordermin 11
costmin 0.45
tick_size 0.001
status online
Pair 1INCHEUR
long_position_limit list(NA)
short_position_limit list(NA)

5. Fetching Spread Data

To get recent spread data for a trading pair:

# Fetch spread data for ADAEUR
spread_data <- getSpreads("ADAEUR")

The spread data provides insight into the bid-ask spread over time, which is useful for liquidity analysis.

Time Bid Ask
2024-10-21 23:00:44 0.333928 0.334044
2024-10-21 23:00:44 0.333930 0.334044
2024-10-21 23:00:44 0.333929 0.334044
2024-10-21 23:00:44 0.333929 0.334044
2024-10-21 23:00:44 0.333929 0.334044
2024-10-21 23:00:45 0.333932 0.334044

6. Getting Ticker Information

To fetch real-time ticker information for trading pairs:

# Fetch ticker information for all pairs
tickers_all <- getTickers()

# Fetch ticker information for specific pairs
tickers_specific <- getTickers(c("ADAEUR", "BTCUSD"))

This function provides real-time price, volume, and trading information.

Column Example
PairID 1INCHEUR
Pair 1INCHEUR
Ask_Price 0.259
Ask_WholeLotVolume 50975
Ask_LotVolume 50975
Bid_Price 0.258
Bid_WholeLotVolume 9720
Bid_LotVolume 9720
LastTrade_Price 0.258
LastTrade_LotVolume 30.05704304
Volume_Today 47390.92125152
Volume_24h 47622.86870632
VWAP_Today 0.2574
VWAP_24h 0.25745
Trades_Today 64
Trades_24h 70
Low_Today 0.254
Low_24h 0.254
High_Today 0.266
High_24h 0.268
Open_Price 0.265

7. Fetching Recent Trade Data

To retrieve recent trade data for a trading pair:

# Fetch recent trades for ADAEUR
recent_trades <- getTrades("ADAEUR")

# Fetch trades since a specific timestamp
recent_trades_since <- getTrades("ADAEUR", since = "2024-10-01 12:00:00")
Price Volume Time Order_Type Execution_Type Miscellaneous Trade_ID
0.334051 1423.900 2024-10-21 23:05:49 buy limit 11285860
0.334051 3110.000 2024-10-21 23:05:44 buy limit 11285859
0.334051 6110.000 2024-10-21 23:05:44 buy limit 11285858
0.334051 1820.000 2024-10-21 23:05:44 buy limit 11285857
0.334051 1880.000 2024-10-21 23:05:44 buy limit 11285856
0.334051 1763.697 2024-10-21 23:05:44 buy limit 11285855

8. Retrieving System Status

To check the operational status of the Kraken exchange:

# Fetch both system status and timestamp
status_info <- getStatus()

# Fetch only system status
system_status <- getStatus("status")
#> [1] "System Status: online"               "System Status: 2024-10-21T21:06:52Z"

9. Retrieving Server Time

You can check the current server time in UNIX or RFC formats:

# Fetch UNIX time
server_time_unix <- getTime("unix")

# Fetch RFC 1123 time
server_time_rfc <- getTime("rfc")
#> [1] "UNIX Time: 2024-10-21 21:06:53"

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.