The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Joint Sparse Optimization via Proximal Gradient Method for Cell Fate Conversion
Version: 1.5.0
Author: Xinlin Hu [aut, cre], Yaohua Hu [cph, aut]
Description: Implementation of joint sparse optimization (JSparO) to infer the gene regulatory network for cell fate conversion. The proximal gradient method is implemented to solve different low-order regularization models for JSparO.
Maintainer: Xinlin Hu <thompson-xinlin.hu@connect.polyu.hk>
License: GPL (≥ 3)
Encoding: UTF-8
Depends: R (≥ 4.0.0)
RoxygenNote: 7.1.1
Imports: pracma
NeedsCompilation: no
Packaged: 2022-08-17 11:09:41 UTC; Thompson
Repository: CRAN
Date/Publication: 2022-08-18 08:40:08 UTC

L1HalfThr - Iterative Half Thresholding Algorithm based on l_{1,1/2} norm

Description

The function aims to solve l_{1,1/2} regularized least squares.

Usage

L1HalfThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L1HalfThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{1,1/2}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{1,1/2} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L1half <- L1HalfThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L1HardThr - Iterative Hard Thresholding Algorithm based on l_{1,0} norm

Description

The function aims to solve l_{1,0} regularized least squares.

Usage

L1HardThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L1HardThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{1,0}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{1,0} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L10 <- L1HardThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L1SoftThr - Iterative Soft Thresholding Algorithm based on l_{1,1} norm

Description

The function aims to solve l_{1,1} regularized least squares.

Usage

L1SoftThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L1SoftThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{1,1}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{1,1} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L11 <- L1SoftThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L1normFun

Description

The function aims to compute the l_1 norm.

Usage

L1normFun(x)

Arguments

x

vector

Details

The L1normFun aims to compute the l_1 norm: \sum_i^n |x_i|

Value

The l_1 norm of vector x

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn


L1twothirdsThr - Iterative Thresholding Algorithm based on l_{1,2/3} norm

Description

The function aims to solve l_{1,2/3} regularized least squares.

Usage

L1twothirdsThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L1twothirdsThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{1,2/3}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{1,2/3} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L1twothirds <- L1twothirdsThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L2HalfThr - Iterative Half Thresholding Algorithm based on l_{2,1/2} norm

Description

The function aims to solve l_{2,1/2} regularized least squares.

Usage

L2HalfThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L2HalfThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{2,1/2}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{2,1/2} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L2half <- L2HalfThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L2HardThr - Iterative Hard Thresholding Algorithm based on l_{2,0} norm

Description

The function aims to solve l_{2,0} regularized least squares.

Usage

L2HardThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L2HardThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{2,0}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{2,0} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L20 <- L2HardThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L2NewtonThr - Iterative Thresholding Algorithm based on l_{2,q} norm with Newton method

Description

The function aims to solve l_{2,q} regularized least squares, where the proximal optimization subproblems will be solved by Newton method.

Usage

L2NewtonThr(A, B, X, s, q, maxIter = 200, innMaxIter = 30, innEps = 1e-06)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

q

value for l_{2,q} norm (i.e., 0 < q < 1)

maxIter

maximum iteration

innMaxIter

maximum iteration in Newton step

innEps

criterion to stop inner iteration

Details

The L2NewtonThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{2,q}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{2,q} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L2q <- L2NewtonThr(A0, B0, X0, s = 10, q = 0.2, maxIter = maxIter0)


L2SoftThr - Iterative Soft Thresholding Algorithm based on l_{2,1} norm

Description

The function aims to solve l_{2,1} regularized least squares.

Usage

L2SoftThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L2SoftThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{2,1}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{2,1} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L21 <- L2SoftThr(A0, B0, X0, s = 10, maxIter = maxIter0)


L2twothirdsThr - Iterative Thresholding Algorithm based on l_{2,2/3} norm

Description

The function aims to solve l_{2,2/3} regularized least squares.

Usage

L2twothirdsThr(A, B, X, s, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

maxIter

maximum iteration

Details

The L2twothirdsThr function aims to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{2,2/3}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{2,2/3} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
NoA <- norm(A0, '2'); A0 <- A0/NoA; B0 <- B0/NoA
res_L2twothirds <- L2twothirdsThr(A0, B0, X0, s = 10, maxIter = maxIter0)


demo_JSparO - The demo of JSparO package

Description

This is the main function of JSparO aimed to solve the low-order regularization models with l_{p,q} norm.

Usage

demo_JSparO(A, B, X, s, p, q, maxIter = 200)

Arguments

A

Gene expression data of transcriptome factors (i.e. feature matrix in machine learning). The dimension of A is m * n.

B

Gene expression data of target genes (i.e. observation matrix in machine learning). The dimension of B is m * t.

X

Gene expression data of Chromatin immunoprecipitation or other matrix (i.e. initial iterative point in machine learning). The dimension of X is n * t.

s

joint sparsity level

p

value for l_{p,q} norm (i.e., p = 1 or 2)

q

value for l_{p,q} norm (i.e., 0 <= q <= 1)

maxIter

maximum iteration

Details

The demo_JSparO function is used to solve joint sparse optimization problem via different algorithms. Based on l_{p,q} norm, functions with different p and q are implemented to solve the problem:

\min \|AX-B\|_F^2 + \lambda \|X\|_{p,q}

to obtain s-joint sparse solution.

Value

The solution of proximal gradient method with l_{p,q} regularizer.

Author(s)

Xinlin Hu thompson-xinlin.hu@connect.polyu.hk

Yaohua Hu mayhhu@szu.edu.cn

Examples

m <- 256; n <- 1024; t <- 5; maxIter0 <- 50
A0 <- matrix(rnorm(m * n), nrow = m, ncol = n)
B0 <- matrix(rnorm(m * t), nrow = m, ncol = t)
X0 <- matrix(0, nrow = n, ncol = t)
res_JSparO <- demo_JSparO(A0, B0, X0, s = 10, p = 2, q = 'half', maxIter = maxIter0)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.