The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The JMH
package jointly models both mean trajectory and within-subject variability of the longitudinal biomarker together with the (competing risks) survival outcome.
You can install the development version of JMH from GitHub with:
The JMH
package comes with several simulated datasets. To fit a joint model, we use JMMLSM
function.
library(JMH)
#> Loading required package: survival
#> Loading required package: nlme
#> Loading required package: MASS
#> Loading required package: statmod
data(ydata)
data(cdata)
## fit a joint model
fit <- JMMLSM(cdata = cdata, ydata = ydata,
long.formula = Y ~ Z1 + Z2 + Z3 + time,
surv.formula = Surv(survtime, cmprsk) ~ var1 + var2 + var3,
variance.formula = ~ Z1 + Z2 + Z3 + time,
quadpoint = 6, random = ~ 1|ID, print.para = FALSE)
fit
#>
#> Call:
#> JMMLSM(cdata = cdata, ydata = ydata, long.formula = Y ~ Z1 + Z2 + Z3 + time, surv.formula = Surv(survtime, cmprsk) ~ var1 + var2 + var3, variance.formula = ~Z1 + Z2 + Z3 + time, random = ~1 | ID, quadpoint = 6, print.para = FALSE)
#>
#> Data Summary:
#> Number of observations: 1353
#> Number of groups: 200
#>
#> Proportion of competing risks:
#> Risk 1 : 45.5 %
#> Risk 2 : 32.5 %
#>
#> Numerical intergration:
#> Method: adaptive Guass-Hermite quadrature
#> Number of quadrature points: 6
#>
#> Model Type: joint modeling of longitudinal continuous and competing risks data with the presence of intra-individual variability
#>
#> Model summary:
#> Longitudinal process: Mixed effects location scale model
#> Event process: cause-specific Cox proportional hazard model with non-parametric baseline hazard
#>
#> Loglikelihood: -3621.603
#>
#> Fixed effects in mean of longitudinal submodel: Y ~ Z1 + Z2 + Z3 + time
#>
#> Estimate SE Z value p-val
#> (Intercept) 4.85342 0.12451 38.97918 0.0000
#> Z1 1.55235 0.16535 9.38841 0.0000
#> Z2 1.93774 0.14598 13.27409 0.0000
#> Z3 1.09289 0.05321 20.53796 0.0000
#> time 4.01129 0.02978 134.71376 0.0000
#>
#> Fixed effects in variance of longitudinal submodel: log(sigma^2) ~ Z1 + Z2 + Z3 + time
#>
#> Estimate SE Z value p-val
#> (Intercept) 0.50745 0.12838 3.95260 0.0001
#> Z1 0.50509 0.16005 3.15590 0.0016
#> Z2 -0.42508 0.13781 -3.08463 0.0020
#> Z3 0.14405 0.04494 3.20563 0.0013
#> time 0.09050 0.02422 3.73720 0.0002
#>
#> Survival sub-model fixed effects: Surv(survtime, cmprsk) ~ var1 + var2 + var3
#>
#> Estimate SE Z value p-val
#> var1_1 1.09710 0.32647 3.36051 0.0008
#> var2_1 0.19237 0.26154 0.73553 0.4620
#> var3_1 0.49611 0.08908 5.56951 0.0000
#>
#> var1_2 -0.88311 0.33702 -2.62037 0.0088
#> var2_2 0.80905 0.30127 2.68549 0.0072
#> var3_2 0.20871 0.09312 2.24143 0.0250
#>
#> Association parameters:
#> Estimate SE Z value p-val
#> (Intercept)_1 0.97480 0.62808 1.55202 0.1207
#> (Intercept)_2 -0.18580 0.47949 -0.38750 0.6984
#> var_(Intercept)_1 0.50030 0.58190 0.85977 0.3899
#> var_(Intercept)_2 -0.84481 0.52520 -1.60857 0.1077
#>
#>
#> Random effects:
#> Formula: ~1 | ID
#> Estimate SE Z value p-val
#> (Intercept) 0.49542 0.11339 4.36913 0.0000
#> var_(Intercept) 0.45581 0.11129 4.09578 0.0000
#> (Intercept):var_(Intercept) 0.26738 0.07854 3.40429 0.0007
The JMH
package can make dynamic prediction given the longitudinal history information. Below is a toy example for competing risks data. Conditional cumulative incidence probabilities for each failure will be presented.
cnewdata <- cdata[cdata$ID %in% c(122, 152), ]
ynewdata <- ydata[ydata$ID %in% c(122, 152), ]
survfit <- survfitJMMLSM(fit, seed = 100, ynewdata = ynewdata, cnewdata = cnewdata,
u = seq(5.2, 7.2, by = 0.5), Last.time = "survtime",
obs.time = "time", method = "GH")
survfit
#>
#> Prediction of Conditional Probabilities of Event
#> based on the adaptive Guass-Hermite quadrature rule with 6 quadrature points
#> $`122`
#> times CIF1 CIF2
#> 1 5.069089 0.00000000 0.0000000
#> 2 5.200000 0.05596021 0.0000000
#> 3 5.700000 0.14584944 0.0000000
#> 4 6.200000 0.33882152 0.0000000
#> 5 6.700000 0.33882152 0.0000000
#> 6 7.200000 0.33882152 0.2171424
#>
#> $`152`
#> times CIF1 CIF2
#> 1 5.133665 0.0000000 0.00000000
#> 2 5.200000 0.0517717 0.00000000
#> 3 5.700000 0.1357406 0.00000000
#> 4 6.200000 0.3195265 0.00000000
#> 5 6.700000 0.3195265 0.00000000
#> 6 7.200000 0.3195265 0.06007945
oldpar <- par(mfrow = c(2, 2), mar = c(5, 4, 4, 4))
plot(survfit, include.y = TRUE)
If we assess the prediction accuracy of the fitted joint model using Brier score as a calibration measure, we may run PEJMMLSM
to calculate the Brier score.
PE <- PEJMMLSM(fit, seed = 100, landmark.time = 3, horizon.time = c(4:6),
obs.time = "time", method = "GH",
n.cv = 3)
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(PE, error = "Brier")
#>
#> Expected Brier Score at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time Brier Score 1 Brier Score 2
#> 1 4 0.06369906 0.06194668
#> 2 5 0.10838731 0.11052099
#> 3 6 0.20187572 0.11613515
An alternative tool is to run MAEQJMMLSM
to calculate the prediction error by comparing the predicted and empirical risks stratified on different risk groups based on quantile of the predicted risks.
## evaluate prediction accuracy of fitted joint model using cross-validated mean absolute prediction error
MAEQ <- MAEQJMMLSM(fit, seed = 100, landmark.time = 3,
horizon.time = c(4:6),
obs.time = "time", method = "GH", n.cv = 3)
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(MAEQ)
#>
#> Sum of absolute error across quintiles of predicted risk scores at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time CIF1 CIF2
#> 1 4 0.386 0.262
#> 2 5 0.476 0.346
#> 3 6 0.456 0.430
Using area under the ROC curve (AUC) as a discrimination measure, we may run AUCJMMLSM
to calculate the AUC score.
AUC <- AUCJMMLSM(fit, seed = 100, landmark.time = 3, horizon.time = c(4:6),
obs.time = "time", method = "GH",
n.cv = 3)
#> The 1 th validation is done!
#> The 2 th validation is done!
#> The 3 th validation is done!
summary(AUC)
#>
#> Expected AUC at the landmark time of 3
#> based on 3 fold cross validation
#> Horizon Time AUC1 AUC2
#> 1 4 0.5502137 0.6839226
#> 2 5 0.6182312 0.6523506
#> 3 6 0.6103724 0.7065657
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.