The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

JGL: Performs the Joint Graphical Lasso for Sparse Inverse Covariance Estimation on Multiple Classes

The Joint Graphical Lasso is a generalized method for estimating Gaussian graphical models/ sparse inverse covariance matrices/ biological networks on multiple classes of data. We solve JGL under two penalty functions: The Fused Graphical Lasso (FGL), which employs a fused penalty to encourage inverse covariance matrices to be similar across classes, and the Group Graphical Lasso (GGL), which encourages similar network structure between classes. FGL is recommended over GGL for most applications. Reference: Danaher P, Wang P, Witten DM. (2013) <doi:10.1111/rssb.12033>.

Version: 2.3.2
Depends: igraph
Published: 2023-12-19
DOI: 10.32614/CRAN.package.JGL
Author: Patrick Danaher
Maintainer: Patrick Danaher <pdanaher at uw.edu>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README
In views: GraphicalModels
CRAN checks: JGL results

Documentation:

Reference manual: JGL.pdf

Downloads:

Package source: JGL_2.3.2.tar.gz
Windows binaries: r-devel: JGL_2.3.2.zip, r-release: JGL_2.3.2.zip, r-oldrel: JGL_2.3.2.zip
macOS binaries: r-release (arm64): JGL_2.3.2.tgz, r-oldrel (arm64): JGL_2.3.2.tgz, r-release (x86_64): JGL_2.3.2.tgz, r-oldrel (x86_64): JGL_2.3.2.tgz
Old sources: JGL archive

Reverse dependencies:

Reverse imports: fgm
Reverse suggests: EstimateGroupNetwork

Linking:

Please use the canonical form https://CRAN.R-project.org/package=JGL to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.