The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
An implementation of the Invariance Partial Pruning (IVPP) approach described in Du, X., Johnson, S. U., Epskamp, S. (in prep) to comparing idiographic and panel network models. IVPP is a two-step method that first test for global network structural difference with invariance test and then inspect specific edge difference with partial pruning.
To install from CRAN:
install.packages("IVPP")
You can install the development version of IVPP from GitHub with:
# install.packages("devtools")
::install_github("xinkaidupsy/IVPP") devtools
An example that uses IVPP to compare panelGVAR models:
library(IVPP)
# Generate the network
<- gen_panelGVAR(n_node = 6,
net_ls p_rewire_temp = 0.5,
p_rewire_cont = 0.5,
n_group = 2)
# Generate the data
<- sim_panelGVAR(temp_base_ls = net_ls$temporal,
data cont_base_ls = net_ls$omega_zeta_within,
n_person = 200,
n_time = 3,
n_group = 2,
n_node = 6)
# global test on both nets
<- IVPP_panelgvar(data,
omnibus_both vars = paste0("V",1:6),
idvar = "subject",
beepvar = "time",
groups = "group",
g_test_net = "both",
net_type = "sparse",
partial_prune = FALSE,
ncores = 2)
# global test on temporal
<- IVPP_panelgvar(data,
omnibus_temp vars = paste0("V",1:6),
idvar = "subject",
beepvar = "time",
groups = "group",
g_test_net = "temporal",
net_type = "sparse",
partial_prune = FALSE,
ncores = 2)
# global test on cont
<- IVPP_panelgvar(data,
omnibus_cont vars = paste0("V",1:6),
idvar = "subject",
beepvar = "time",
groups = "group",
g_test_net = "contemporaneous",
net_type = "sparse",
partial_prune = FALSE,
ncores = 2)
# partial prune on both networks
<- IVPP_panelgvar(data,
pp_both vars = paste0("V",1:6),
idvar = "subject",
beepvar = "time",
groups = "group",
global = FALSE,
net_type = "sparse",
partial_prune = TRUE,
prune_net = "both",
ncores = 2)
An example that uses IVPP to compare N = 1 GVAR models
library(IVPP)
# Generate the network
<- gen_tsGVAR(n_node = 6,
net_ls p_rewire_temp = 0.5,
p_rewire_cont = 0.5,
n_persons = 2)
# Generate the data
<- sim_tsGVAR(beta_base_ls = net_ls$beta,
data kappa_base_ls = net_ls$kappa,
# n_person = 2,
n_time = 100)
# global test on temporal
<- IVPP_tsgvar(data,
omnibus_temp vars = paste0("V",1:6),
idvar = "id",
g_test_net = "temporal",
net_type = "sparse",
partial_prune = FALSE,
ncores = 2)
# global test on cont
<- IVPP_tsgvar(data,
omnibus_cont vars = paste0("V",1:6),
idvar = "id",
g_test_net = "contemporaneous",
net_type = "sparse",
partial_prune = FALSE,
ncores = 2)
# partial prune on both networks
<- IVPP_tsgvar(data,
pp_both vars = paste0("V",1:6),
idvar = "id",
global = FALSE,
net_type = "sparse",
partial_prune = TRUE,
prune_net = "both",
ncores = 2)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.