The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ISCA

Overview

The Inductive Subgroup Comparison Approach (‘ISCA’) offers a way to compare groups that are internally differentiated and heterogeneous. It starts by identifying the social structure of a reference group against which a minority or another group is to be compared, yielding empirical subgroups to which minority members are then matched based on how similar they are. The modelling of specific outcomes then occurs within specific subgroups in which majority and minority members are matched. ISCA is characterized by its data-driven, probabilistic, and iterative approach and combines fuzzy clustering, Monte Carlo simulation, and regression Analysis. ISCA_random_assignments() assigns subjects probabilistically to subgroups. ISCA_clustertable() provides summary statistics of each cluster across iterations. ISCA_modeling provides OLS regression results for each cluster across iterations.

Installation

You can install the package from this GitHub repository. Be sure to first install the remotes package.

install.packages("remotes")

Then install ISCA using the install_github function in the remotes package.

remotes::install_github("ldrouhot/ISCA")

Examples

The functions are demonstrated using a fictitious dataset containing 1,000 observations, which is included in the package. The first function ISCA_random_assignments() produces a dataset that has one new column for each probabilistic draw/iteration. The values indicate the respective cluster assignments. The output is the foundation of the other two functions in the ISCA-package.

library(ISCA)
data(sim_data)

ISCA_step1 <- ISCA::ISCA_random_assignments(data=sim_data, filter=native, majority_group=1, minority_group=c(0), fuzzifier = 1.5, n_clusters=4, draws=5, cluster_vars= c("female", "age", "education", "income"))
head(ISCA_step1)
#>   female age education income religiosity discrimination native A1 A2 A3 A4 A5
#> 1      1  74         6   1608           2              2      0  1  1  1  1  1
#> 2      1  69         9   1227          10              4      0  4  4  4  4  4
#> 3      0  21         6      0           2              5      0  3  3  3  3  3
#> 4      1  64         6   2132          10              3      0  2  2  2  2  2
#> 5      1  20         7   1487           2              3      0  1  4  1  1  1
#> 6      1  25         5   1761           9              3      0  1  1  1  1  1

The second function result_ISCA_clustertable() gives an overview of the distribution of the variables of interest per cluster and across iterations.

result_ISCA_clustertable <- ISCA::ISCA_clustertable(data = ISCA_step1, cluster_vars = c("native", "education", "age", "female", "discrimination", "religiosity"), draws = 5)
print(result_ISCA_clustertable)
#>                        variable        1        2        3        4
#> 1                    assignment   1.0000   2.0000   3.0000   4.0000
#> 2             grand_mean_native   0.5014   0.4214   0.4684   0.4576
#> 3          cluster_error_native   0.0175   0.0122   0.0213   0.0103
#> 4          grand_mean_education   5.0306   5.0152   5.0688   5.0278
#> 5       cluster_error_education   0.0443   0.0426   0.0410   0.0448
#> 6            grand_sd_education   1.3002   1.3807   1.2700   1.3782
#> 7                grand_mean_age  47.4305  46.2335  47.5678  49.5852
#> 8             cluster_error_age   0.3652   0.5450   0.3787   0.2581
#> 9                  grand_sd_age  18.9128  18.2450  17.5107  17.9565
#> 10            grand_mean_female   0.4802   0.4777   0.4976   0.4795
#> 11         cluster_error_female   0.0072   0.0112   0.0033   0.0091
#> 12    grand_mean_discrimination   3.9587   4.0172   3.9800   3.9644
#> 13 cluster_error_discrimination   0.0401   0.0392   0.0141   0.0231
#> 14      grand_sd_discrimination   1.1245   1.2439   1.2637   1.2664
#> 15       grand_mean_religiosity   4.8027   4.8783   4.7865   4.8623
#> 16    cluster_error_religiosity   0.0914   0.0761   0.0860   0.0705
#> 17         grand_sd_religiosity   2.9023   2.8570   2.8655   2.8037
#> 18             grand_mean_count 232.4000 188.4000 252.8000 326.4000
#> 19          cluster_error_count   8.0808   3.4351  13.6638  10.5024

The third function ISCA_clustertable() runs OLS regressions for each cluster across iterations. The output is a list storing the regression estimates and adjusted R Squared values.

ISCA_modeling_res <- ISCA::ISCA_modeling(data= ISCA_step1, model_spec="religiosity ~ native + female + age + education + discrimination", draws = 5, n_clusters = 4)
#> `mutate_if()` ignored the following grouping variables:
#> • Column `cluster`
print(ISCA_modeling_res[1])
#> [[1]]
#> # A tibble: 30 × 5
#> # Groups:   cluster [5]
#>    cluster term           mean_coefficients mean_std.error mean_p_value
#>    <fct>   <chr>                      <dbl>          <dbl>        <dbl>
#>  1 1       (Intercept)               4.09           0.482        0.0012
#>  2 1       age                       0.0007         0.0036       0.784 
#>  3 1       discrimination            0.206          0.0873       0.267 
#>  4 1       education                 0.0283         0.047        0.765 
#>  5 1       female                    0.623          0.191        0.130 
#>  6 1       native                   -1.16           0.182        0.0048
#>  7 2       (Intercept)               4.23           0.537        0.0009
#>  8 2       age                      -0.0067         0.0066       0.504 
#>  9 2       discrimination            0.190          0.0649       0.285 
#> 10 2       education                 0.131          0.0692       0.417 
#> # ℹ 20 more rows
print(ISCA_modeling_res[2])
#> [[1]]
#>   mean.fit.cluster1 mean.fit.cluster2 mean.fit.cluster3 mean.fit.cluster4
#> 1        0.03939277        0.03813129        0.05497081        0.09119341
#>   pooled.model
#> 1   0.06104137

Vignettes

Check out the ISCA vignette for more in-depth explanations.

# browseVignettes("ISCA")

Citation

Please cite the package as follows:

Drouhot, Lucas G., and Marion Späth. 2024. ISCA: Compare Heterogeneous Social Groups. R package version 0.1.0.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.