The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This is a R package to implement certain spatial and spatio-temporal
models, including some of the spatio-temporal models proposed here.
It uses the cgeneric interface in the INLA package, to
implement models by writing C code to build the precision
matrix compiling it so that INLA can use it internally.
some of the models presented in A diffusion-based spatio-temporal extension of Gaussian Matérn fields (2024). Finn Lindgren, Haakon Bakka, David Bolin, Elias Krainski and Håvard Rue. SORT 48 (1) January-June 2024, 3-66. (https://www.idescat.cat/sort/sort481/48.1.1.Lindgren-etal.pdf)
the barrier (and transparent barriers) model proposed in https://doi.org/10.1016/j.spasta.2019.01.002
Please check here
The ‘INLA’ package is a suggested one, but you will need it for actually fitting a model. You can install it with
install.packages("INLA",repos=c(getOption("repos"),INLA="https://inla.r-inla-download.org/R/testing"), dep=TRUE) You can install the current CRAN version of INLAspacetime:
install.packages("INLAspacetime")You can install the latest version of INLAspacetime from GitHub with
## install.packages("remotes")
remotes::install_github("eliaskrainski/INLAspacetime", build_vignettes=TRUE)Simulate some fake data.
set.seed(1)
n <- 5
dataf <- data.frame(
s1 = runif(n, -1, 1),
s2 = runif(n, -1, 1),
time = runif(n, 1, 4),
y = rnorm(n, 0, 1))
str(dataf)
#> 'data.frame': 5 obs. of 4 variables:
#> $ s1 : num -0.469 -0.256 0.146 0.816 -0.597
#> $ s2 : num 0.797 0.889 0.322 0.258 -0.876
#> $ time: num 1.62 1.53 3.06 2.15 3.31
#> $ y : num -0.00577 2.40465 0.76359 -0.79901 -1.14766Loading packages:
library(fmesher)
library(INLA)
library(INLAspacetime)
#> see more on https://eliaskrainski.github.io/INLAspacetimeDefine spatial and temporal discretization meshes
smesh <- fm_mesh_2d(
loc = cbind(0,0),
max.edge = 5,
offset = 2)
tmesh <- fm_mesh_1d(
loc = 0:5)Define the spacetime model object to be used
stmodel <- stModel.define(
smesh = smesh, ## spatial mesh
tmesh = tmesh, ## temporal mesh
model = '121', ## model, see the paper
control.priors = list(
prs = c(1, 0.1), ## P(spatial range < 1) = 0.1
prt = c(5, 0), ## temporal range fixed to 5
psigma = c(1, 0.1) ## P(sigma > 1) = 0.1
)
)
#> Warning in stModel.define(smesh = smesh, tmesh = tmesh, model = "121",
#> control.priors = list(prs = c(1, : Setting 'useINLAprecomp = FALSE' to use new
#> code.Define a projector matrix from the spatial and temporal meshes to the data
Aproj <- inla.spde.make.A(
mesh = smesh,
loc = cbind(dataf$s1, dataf$s2),
group = dataf$time,
group.mesh = tmesh
)Create a ‘fake’ column to be used as index. in the f()
term
dataf$st <- NASetting the likelihood precision (as fixed)
ctrl.lik <- list(
hyper = list(
prec = list(
initial = 10,
fixed = TRUE)
)
)Combine a ‘fake’ index column with A.local
fmodel <- y ~ f(st, model = stmodel, A.local = Aproj)Call the main INLA function:
fit <- inla(
formula = fmodel,
data = dataf,
control.family = ctrl.lik)Posterior marginal summaries for fixed effect and the model parameters that were not fixed.
fit$summary.fixed
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> (Intercept) 0.693389 4.03265 -6.962331 0.5227188 9.417425 0.5550712
#> kld
#> (Intercept) 7.398472e-05
fit$summary.hyperpar
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Theta1 for st 1.199222 0.4918533 0.3653818 1.161539 2.277396 0.974993
#> Theta2 for st 1.435517 0.1710676 1.1031120 1.434032 1.776667 1.427752library(inlabru)Setting the observation (likelihood) model object
data_model <- bru_obs(
formula = y ~ .,
family = "gaussian",
control.family = ctrl.lik,
data = dataf)Define the data model: the linear predictor terms
linpred <- ~ 1 +
field(list(space = cbind(s1, s2),
time = time),
model = stmodel)Fitting
result <- bru(
components = linpred,
data_model)Summary of the model parameters
result$summary.fixed
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Intercept 0.6690302 3.970182 -6.887199 0.509471 9.214066 0.5379221
#> kld
#> Intercept 5.683968e-05
result$summary.hyperpar
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> Theta1 for field 1.190438 0.4868951 0.3623876 1.153809 2.256071 0.9726162
#> Theta2 for field 1.435268 0.1709839 1.1033563 1.433674 1.776580 1.4269195These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.