The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

ICDS User Guide

Junwei Han

1 Introduce

This vignette illustrates how to easily use the ICDS package. This package can identifying cancer risk subpathways which can explain the disturbed biological functions in more detail and accurately.

2 Example: Obtain p-values or corrected p-values for each gene

We can use function getExampleData to return example data and environment variables, such as the data of exp_data.

library(ICDS)
# obtain the expression profile data
exp_data<-GetExampleData("exp_data")
#view first six rows and six colmns of data
exp_data[1:6, 1:6]
##       TCGA.38.4632.11 TCGA.44.5645.11 TCGA.44.6144.11 TCGA.44.6145.11
## GALM      15.55599000      18.3477000      13.4976300      12.4355000
## HK3        9.65274100      12.4103200      12.3639500      17.5058100
## G6PC       0.06917292       0.1689286       0.1555786       0.1847281
## PGM1      24.33696000      69.3011200      68.6039000      48.9442400
## HKDC1      0.65847880       1.2588160       3.0050750       2.8253770
## GPI       73.56174000      58.7149700      62.7976900      58.1940700
##       TCGA.44.6146.11 TCGA.44.6147.11
## GALM       16.5563600       8.3897860
## HK3         6.8267430       8.2327620
## G6PC        0.1555417       0.1721295
## PGM1       32.4310600      43.4132300
## HKDC1       1.1371050       0.5703535
## GPI        53.6260600      41.9420700
#obtain the labels of the samples of the expression profile, the label vector is a vector of 0/1s,
# 0 represents the case sample and 1 represents the control sample
label1<-GetExampleData("label1")
#view first ten label
label1[1:10]
##  [1] 0 0 0 0 0 0 0 0 0 0

we used the Student’s t-test to calculate the p-value for expression level and methylation level of each gene in the tumor and normal samples.label,0 represents normal samples;1 represents cancer samples.

#calculate p-values or corrected p-values for each gene

exp.p<-getExpp(exp_data,label = label1,p.adjust = FALSE)
label2<-GetExampleData("label2")
meth_data<-GetExampleData("meth_data")
meth.p<-getMethp(meth_data,label = label2,p.adjust = FALSE)
exp.p[1:10,]
##            gene                    p
## GALM       GALM  0.00382104698965552
## HK3         HK3 1.22893635962516e-14
## G6PC       G6PC    0.309765961639907
## PGM1       PGM1 6.50659302913753e-05
## HKDC1     HKDC1 1.27479647059785e-05
## GPI         GPI 1.37454189773835e-11
## FBP1       FBP1 2.09855354282047e-12
## ALDOA     ALDOA 2.54043616919423e-14
## G6PC3     G6PC3 0.000265142879987233
## ALDH7A1 ALDH7A1  0.00626937915913354

For copy number data, we can calculate p-value through the following way:

#obtain Copy number variation data
cnv_data<-GetExampleData("cnv_data")
#obtion amplified genes
amp_gene<-GetExampleData("amp_gene")
#obtion deleted genes
del_gene<-GetExampleData(("del_gene"))
#calculate p-values or corrected p-values for each gene
cnv.p<-getCnvp(exp_data,cnv_data,amp_gene,del_gene,p.adjust=FALSE,method="fdr")
cnv.p[1:10,]
##            gene                   p
## ACSS1     ACSS1 0.00641326042511501
## ACSS2     ACSS2                   1
## ADH1A     ADH1A   0.454656092798328
## ADH1B     ADH1B   0.429492188406724
## ADH5       ADH5 0.00253178462835118
## AKR1A1   AKR1A1                   1
## ALDH1A3 ALDH1A3                   1
## ALDH1B1 ALDH1B1                   1
## ALDH2     ALDH2   0.145658828705581
## ALDH3B1 ALDH3B1                   1

3 Example: Combine P-values of different kinds of data

With the above data, we constructed an integrative gene z-score (Z) based three datasets.

#obtain the p-values of expression profile data,methylation profile data and Copy number variation data
exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
#calculate z-scores for p-values of each kind of data
zexp<-coverp2zscore(exp.p)
zmeth<-coverp2zscore(meth.p)
zcnv<-coverp2zscore(cnv.p)
#combine two kinds of p-values,then,calculate z-score for them
zz<-combinep_two(exp.p,meth.p)
#combine three kinds of p-values,then,calculate z-score for them
zzz<-combinep_three(exp.p,meth.p,cnv.p)
zzz[1:6,]
##                       padjust          z_score                exp.p
## AACS     1.49856652283489e-12 6.97785849233781 4.27591802855694e-05
## AASDHPPT 3.59090577618182e-09 5.78661689489162 1.51758714809107e-05
## ACAA1    2.26766115435344e-06 4.58520914055579  0.00254706069215554
## ACACA    7.81825182198367e-05 3.78073660442176   0.0414461349050663
## ACACB    3.17474389450551e-24 10.0863369031681  1.0796730435591e-25
## ACAD8    8.80185318920442e-08 5.22301085773967 2.21022111058924e-05
##                        meth.p                cnv.p
## AACS     3.79351155555026e-07 0.000154005933715148
## AASDHPPT    0.138052336368975 4.95190895519194e-06
## ACAA1    4.80814465758352e-06                    1
## ACACA    1.62339209249856e-05                    1
## ACACB       0.152770581756488   0.0979253199784077
## ACAD8        0.19898879195769 7.67894501521561e-05

4 Example: Obtain subpathways

For a priori KEGG path, we perform a greedy algorithm to search for interested subpathways.We provide two statistical test methods of the subpathway, which one is whole gene-based perturbation, and the other is the local gene perturbation in a particular pathway.

#obtain z-score of each gene
zzz<-GetExampleData("zzz")
zzz[1:10,]
##                       padjust          z_score                exp.p
## AACS      1.4985665228349e-12 6.97785849233781 4.27591802855694e-05
## AASDHPPT 3.59090577618182e-09 5.78661689489162 1.51758714809107e-05
## ACAA1    2.26766115435345e-06 4.58520914055579  0.00254706069215554
## ACACA    7.81825182198368e-05 3.78073660442176   0.0414461349050663
## ACACB    3.17474389450549e-24 10.0863369031681  1.0796730435591e-25
## ACAD8    8.80185318920443e-08 5.22301085773967 2.21022111058924e-05
## ACADL    6.14820533862155e-54 15.4184802326598 2.63073053599382e-55
## ACAT1     1.1545332900424e-06 4.72430235586153 6.58517201812735e-06
## ACER1    2.96364608769913e-06  4.5289664035691                    1
## ACER3    1.63555761386473e-07 5.10711682637474  5.9116689567922e-07
##                        meth.p                cnv.p
## AACS     3.79351155555026e-07 0.000154005933715148
## AASDHPPT    0.138052336368975 4.95190895519194e-06
## ACAA1    4.80814465758352e-06                    1
## ACACA    1.62339209249856e-05                    1
## ACACB       0.152770581756488   0.0979253199784077
## ACAD8        0.19898879195769 7.67894501521561e-05
## ACADL     0.00265801159320894                    1
## ACAT1       0.287245454170909  0.00305344462196611
## ACER1    1.65137200042873e-08                    1
## ACER3     0.00112767915011995                    1
require(graphite)
zz<-GetExampleData("zzz")
#subpathdata<-FindSubPath(zz) #only show

Optimize interested subpathways.If the number of genes shared by the two pathways accounted for more than the Overlap ratio of each pathway genes,than combine two pathways.

subpathdata<-GetExampleData("subpathdata")
keysubpathways<-opt_subpath(subpathdata,zz,overlap=0.6)
head(keysubpathways)
##      SubpathwayID  pathway                       
## [1,] "path00010_1" "Glycolysis / Gluconeogenesis"
## [2,] "path00010_2" "Glycolysis / Gluconeogenesis"
## [3,] "path00010_3" "Glycolysis / Gluconeogenesis"
## [4,] "path00010_4" "Glycolysis / Gluconeogenesis"
## [5,] "path00010_5" "Glycolysis / Gluconeogenesis"
## [6,] "path00010_6" "Glycolysis / Gluconeogenesis"
##      Subgene                                                                
## [1,] "G6PC/HK3/PGM1/HKDC1/GPI/FBP1/ALDOA/G6PC2/GALM/G6PC3"                  
## [2,] "ADH5/ADH1B/ADH1A/ALDH3B2/ALDH2/AKR1A1/ALDH7A1/ALDH3B1/ALDH1B1/ALDH1A3"
## [3,] "PKLR/ENO1/LDHA/PGAM1/MINPP1/PCK1/LDHAL6A/LDHAL6B"                     
## [4,] "ACSS1/ALDH3B2/ADH1B/ADH1A/ALDH2/DLAT/ACSS2"                           
## [5,] "PFKP/ALDOA/GAPDH/FBP1/GPI/ALDOC/GAPDHS"                               
## [6,] "PGAM4/ENO1/PGAM1/MINPP1/PCK1/PGK2"                                    
##      Size SubpathwayZScore  
## [1,] "10" "20.8492758044976"
## [2,] "10" "20.9317587858665"
## [3,] "8"  "19.0899605586423"
## [4,] "7"  "19.7078248333379"
## [5,] "7"  "18.3020024323356"
## [6,] "6"  "16.7772761794305"

the perturbation test was used to calculate statistical significance for these interested subpathways.

keysubpathways<-Permutation(keysubpathways,zz,nperm1=100,method1=TRUE,nperm2=100,method2=FALSE)
head(keysubpathways)
##      SubpathwayID  pathway                       
## [1,] "path00010_1" "Glycolysis / Gluconeogenesis"
## [2,] "path00010_2" "Glycolysis / Gluconeogenesis"
## [3,] "path00010_3" "Glycolysis / Gluconeogenesis"
## [4,] "path00010_4" "Glycolysis / Gluconeogenesis"
## [5,] "path00010_5" "Glycolysis / Gluconeogenesis"
## [6,] "path00010_6" "Glycolysis / Gluconeogenesis"
##      Subgene                                                                
## [1,] "G6PC/HK3/PGM1/HKDC1/GPI/FBP1/ALDOA/G6PC2/GALM/G6PC3"                  
## [2,] "ADH5/ADH1B/ADH1A/ALDH3B2/ALDH2/AKR1A1/ALDH7A1/ALDH3B1/ALDH1B1/ALDH1A3"
## [3,] "PKLR/ENO1/LDHA/PGAM1/MINPP1/PCK1/LDHAL6A/LDHAL6B"                     
## [4,] "ACSS1/ALDH3B2/ADH1B/ADH1A/ALDH2/DLAT/ACSS2"                           
## [5,] "PFKP/ALDOA/GAPDH/FBP1/GPI/ALDOC/GAPDHS"                               
## [6,] "PGAM4/ENO1/PGAM1/MINPP1/PCK1/PGK2"                                    
##      Size SubpathwayZScore   p1     fdr1               
## [1,] "10" "20.8492758044976" "0.08" "0.476279069767442"
## [2,] "10" "20.9317587858665" "0.1"  "0.501960784313725"
## [3,] "8"  "19.0899605586423" "0.08" "0.476279069767442"
## [4,] "7"  "19.7078248333379" "0.03" "0.333913043478261"
## [5,] "7"  "18.3020024323356" "0.07" "0.471578947368421"
## [6,] "6"  "16.7772761794305" "0.08" "0.476279069767442"

4 Example: plot a network graph when user input a list of gene

require(graphite)
require(org.Hs.eg.db)
subpID<-unlist(strsplit("ACSS1/ALDH3B2/ADH1B/ADH1A/ALDH2/DLAT/ACSS2","/"))
pathway.name="Glycolysis / Gluconeogenesis"
zzz<- GetExampleData("zzz")
PlotSubpathway(subpID=subpID,pathway.name=pathway.name,zz=zzz)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.