The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Set some parameters.
Set a working seed for random numbers
Create the secret key and the polynomials a and e, which will go into the public key
# generate a secret key
s = GenSecretKey(n)
# generate a
a = GenA(n, q)
# generate the error
e = GenError(n)
Generate the public key.
Create a polynomial message
Create polynomials for the encryption
Generate the ciphertext
m1_ct0 = pk0*u + p*e1 + m1
m1_ct0 = m1_ct0 %% pm
m1_ct0 = CoefMod(m1_ct0, q)
m1_ct1 = pk1*u + p*e2
m1_ct1 = m1_ct1 %% pm
m1_ct1 = CoefMod(m1_ct1, q)
m2_ct0 = pk0*u + p*e1 + m2
m2_ct0 = m2_ct0 %% pm
m2_ct0 = CoefMod(m2_ct0, q)
m2_ct1 = pk1*u + p*e2
m2_ct1 = m2_ct1 %% pm
m2_ct1 = CoefMod(m2_ct1, q)
EvalMult
multi_ct0 = m1_ct0 * m2_ct0
multi_ct0 = multi_ct0 %% pm
multi_ct0 = CoefMod(multi_ct0, q)
multi_ct0 = round(multi_ct0)
multi_ct1 = (m1_ct0 * m2_ct1 + m1_ct1 * m2_ct0)
multi_ct1 = multi_ct1 %% pm
multi_ct1 = CoefMod(multi_ct1, q)
multi_ct1 = round(multi_ct1)
multi_ct2 = (m1_ct1 * m2_ct1)
multi_ct2 = multi_ct2 %% pm
multi_ct2 = CoefMod(multi_ct2, q)
multi_ct2 = round(multi_ct2)
Decrypt
decrypt = (multi_ct2 * s^2) + (multi_ct1 * s) + multi_ct0
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)
decrypt = CoefMod(round(decrypt), p)
print(decrypt)
#> x + x^2 + x^3
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.