The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

BGV-addition

library(polynom)
library(HomomorphicEncryption)

Set some parameters.

d  =   4
n  =   2^d
p  =   (n/2)-1
t  =   p
q  = 868
pm = GenPolyMod(n)

Set a working seed for random numbers

set.seed(123)

Create the secret key and the polynomials a and e, which will go into the public key

# generate a secret key
s = GenSecretKey(n)

# generate a
a = GenA(n, q)

# generate the error
e = GenError(n)

Generate the public key.

pk0 = GenPubKey0(a, s, e*p, pm, q)
pk1 = GenPubKey1(a)

Create a polynomial message

# create a message
m1 = polynomial( coef=c(1, 1, 1) )
m2 = polynomial( coef=c(0, 1   ) )

Create polynomials for the encryption

# polynomials for encryption
e1 = GenError(n)
e2 = GenError(n)
u  = GenU(n)

Generate the ciphertext

m1_ct0 = pk0*u + p*e1 + m1
m1_ct0 = m1_ct0 %% pm
m1_ct0 = CoefMod(m1_ct0, q)
  
m1_ct1 = pk1*u + p*e2
m1_ct1 = m1_ct1 %% pm
m1_ct1 = CoefMod(m1_ct1, q)

m2_ct0 = pk0*u + p*e1 + m2
m2_ct0 = m2_ct0 %% pm
m2_ct0 = CoefMod(m2_ct0, q)
  
m2_ct1 = pk1*u + p*e2
m2_ct1 = m2_ct1 %% pm
m2_ct1 = CoefMod(m2_ct1, q)

EvalAdd

sum_ct0 = m1_ct0 + m2_ct0
sum_ct1 = m1_ct1 + m2_ct1

Decrypt

decrypt = (sum_ct1 * s) + sum_ct0
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)
decrypt = CoefMod(round(decrypt), p)
print(decrypt)
#> 1 + 2*x + x^2

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.