The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

BGV 2

library(polynom)
library(HomomorphicEncryption)

Set some parameters.

d  =   4
n  =   2^d
p  =   (n/2)-1
t  =   p
q  = 868

Set a working seed for random numbers

set.seed(123)

Here we create the polynomial modulo.

pm = polynomial( coef=c(1, rep(0, n-1), 1 ) )
print(pm)
#> 1 + x^16

Create the secret key.

# generate a secret key
s = polynomial( sample.int(3, n, replace=TRUE)-2 )
print(s)
#> 1 + x + x^2 + x^4 + x^8 - x^9 - x^12 + x^14 - x^15

Create a (part of the public key)

# generate a
a = polynomial(sample.int(q, n, replace=TRUE))
print(a)
#> 91 + 348*x + 649*x^2 + 355*x^3 + 840*x^4 + 26*x^5 + 519*x^6 + 426*x^7 + 649*x^8  
#> + 766*x^9 + 211*x^10 + 590*x^11 + 593*x^12 + 555*x^13 + 373*x^14 + 844*x^15

Create the error term e to be used to generate the public key.

# generate the error
e = polynomial( coef=round(stats::rnorm(n, 0, n/3)) )
print(e)
#> -6 - x - 5*x^2 - 4*x^3 - 3*x^4 - 9*x^5 + 4*x^6 + x^7 - 6*x^8 + 7*x^9 + 2*x^10 -  
#> 2*x^11 + 5*x^12 + 5*x^13 + 4*x^14 + 4*x^15

Generate Part 1 of the Public Key.

pk1 = -(a*s + p*e)
pk1 = pk1 %% pm
pk1 = CoefMod(pk1, q)
print(pk1)
#> 577 + 764*x + 467*x^2 + 395*x^3 + 537*x^4 + 201*x^5 + 372*x^6 + 401*x^7 +  
#> 733*x^8 + 255*x^9 + 642*x^10 + 37*x^11 + 818*x^12 + 830*x^13 + 65*x^14 +  
#> 405*x^15

Generate Part 2 of the Public Key (which is actually just equal to a).

pk2 = a

Create a polynomial message

# create a message
m = polynomial( coef=c(2, 3, 4) )

Create polynomials for the encryption of the message. Since e1 and e2 are constructed the same way as e, we don’t print them, we just print u.

# polynomials for encryption
e1 = polynomial( coef=round(stats::rnorm(n, 0, n/3)) )
e2 = polynomial( coef=round(stats::rnorm(n, 0, n/3)) )
u  = polynomial( coef=sample.int(3, (n-1), replace=TRUE)-2 )
print(u)
#> x^3 - x^5 + x^9 + x^11 + x^13 - x^14

Generate Part 1 of the ciphertext version of the message.

ct1 = pk1*u + p*e1 + m
ct1 = ct1 %% pm
ct1 = CoefMod(ct1, q)
print(ct1)
#> 436 + 377*x + 95*x^2 + 818*x^3 + 820*x^4 + 695*x^5 + 61*x^6 + 620*x^7 + 86*x^8  
#> + 392*x^9 + 533*x^10 + 420*x^11 + 701*x^12 + 159*x^13 + 572*x^14 + 788*x^15

Generate Part 2 of the ciphertext version of the message.

ct2 = pk2*u + p*e2
ct2 = ct2 %% pm
ct2 = CoefMod(ct2, q)
print(ct2)
#> 745 + 352*x + 194*x^2 + 35*x^3 + 741*x^4 + 420*x^5 + 488*x^6 + 655*x^7 +  
#> 511*x^8 + 241*x^9 + 796*x^10 + 149*x^11 + 530*x^12 + 264*x^13 + 476*x^14 +  
#> 306*x^15

Decrypt

decrypt = (ct2 * s) + ct1
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)
decrypt = CoefMod(round(decrypt), p)
print(decrypt)
#> 2 + 3*x + 4*x^2

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.