The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Load libraries that will be used.
Set some parameters.
Set a working seed for random numbers
Here we create the polynomial modulo.
Create the secret key and the polynomials a and e, which will go into the public key
# generate a secret key
s = GenSecretKey(n)
print(s)
#> 1 + x + x^2 + x^4 + x^8 - x^9 - x^12 + x^14 - x^15
# generate a
a = GenA(n, q)
print(a)
#> 91 + 348*x + 649*x^2 + 355*x^3 + 840*x^4 + 26*x^5 + 519*x^6 + 426*x^7 + 649*x^8
#> + 766*x^9 + 211*x^10 + 590*x^11 + 593*x^12 + 555*x^13 + 871*x^14 + 373*x^15
Generate the error for the public key.
e = GenError(n)
print(e)
#> -4 - x - 2*x^2 - 6*x^3 + 6*x^5 - x^6 - 6*x^7 - 4*x^8 + 4*x^9 - 2*x^10 - 7*x^11
#> - 3*x^12 - x^13 + 5*x^14 - x^15
Generate the public key.
pk0 = GenPubKey0(a, s, e, pm, q)
print(pk0)
#> 560 + 287*x + 70*x^2 + 788*x^3 + 534*x^4 + 150*x^5 + 43*x^6 + 331*x^7 + 328*x^8
#> + 318*x^9 + 184*x^10 + 519*x^11 + 504*x^12 + 783*x^13 + 79*x^14 + 425*x^15
Create a polynomial message
Create polynomials for the encryption
# polynomials for encryption
e1 = GenError(n)
e2 = GenError(n)
u = GenU(n)
print(u)
#> x^3 - x^5 + x^9 + x^11 + x^13 - x^14
Generate the ciphertext.
ct0 = EncryptPoly0(m, pk0, u, e1, p, pm, q)
print(ct0)
#> 157 + 787*x + 337*x^2 + 236*x^3 + 454*x^4 + 575*x^5 + 87*x^6 + 14*x^7 + 448*x^8
#> + 640*x^10 + 747*x^11 + 711*x^12 + 564*x^13 + 866*x^14 + 678*x^15
ct1 = EncryptPoly1( pk1, u, e2, pm, q)
print(ct1)
#> 760 + 698*x + 679*x^2 + 477*x^3 + 329*x^4 + 414*x^5 + 487*x^6 + 165*x^7 +
#> 111*x^8 + 642*x^9 + 409*x^10 + 565*x^11 + 660*x^12 + 644*x^13 + 469*x^14 +
#> 297*x^15
Decrypt
decrypt = (ct1 * s) + ct0
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)
# rescale
decrypt = decrypt * p/q
Round (remove the error) then mod p
Which is indeed the message that we first encrypted.
Next, look at the vignette BFV-2 which does the exact same process, but unpacks all the functions used here into basic mathematical operations.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.