The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

BFV-multiply

Load libraries that will be used.

library(polynom)
library(HomomorphicEncryption)

Set some parameters.

d  =      4
n  =      2^d
p  =     (n/2)-1
q  = 424242
pm = GenPolyMod(n)

Set a working seed for random numbers

set.seed(123)

Create the secret key and the polynomials a and e, which will go into the public key

# generate a secret key
s = GenSecretKey(n)

# generate a
a = GenA(n, q)

# generate the error
e = GenError(n)

Generate the public key.

# generate the public key
pk0 = GenPubKey0(a, s, e, pm, q)
pk1 = GenPubKey1(a)

Create polynomials for the encryption

# polynomials for encryption
e1 = GenError(n)
e2 = GenError(n)
u  = GenU(n)

Now create to messages to multiply.

m1 = polynomial(c(3, 2, 2))
m2 = polynomial(c(0, 2   ))

Encrypt the two messages (i.e. genete the ct0 and ct1 part for each m1 and m2).

m1_ct0 = EncryptPoly0(m1, pk0, u, e1, p, pm, q)
m1_ct1 = EncryptPoly1(    pk1, u, e2,    pm, q)
m2_ct0 = EncryptPoly0(m2, pk0, u, e1, p, pm, q)
m2_ct1 = EncryptPoly1(    pk1, u, e2,    pm, q)

Multiply the encrypted messages.

multi_ct0 = m1_ct0 * m2_ct0 * (p/q)
multi_ct0 = multi_ct0 %% pm
multi_ct0 = CoefMod(multi_ct0, q)
multi_ct0 = round(multi_ct0)

multi_ct1 = (m1_ct0 * m2_ct1 + m1_ct1 * m2_ct0) * (p/q)
multi_ct1 = multi_ct1 %% pm
multi_ct1 = CoefMod(multi_ct1, q)
multi_ct1 = round(multi_ct1)

multi_ct2 = (m1_ct1 * m2_ct1) * (p/q)
multi_ct2 = multi_ct2 %% pm
multi_ct2 = CoefMod(multi_ct2, q)
multi_ct2 = round(multi_ct2)

Decrypt the multiple

decrypt = (multi_ct2 * s^2) + (multi_ct1 * s) + multi_ct0
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)

# rescale
decrypt = decrypt * p/q

# round then mod p
decrypt = CoefMod(round(decrypt), p)
print(decrypt)
#> 6*x + 4*x^2 + 4*x^3

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.