The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

HistDAWass

HistDAWass

(Histogram-valued Data analysis using Wasserstein

metric)

In this document we describe the main features of the HistDAWass package. The name is the acronym for Histogram-valued Data analysis using Wasserstein metric. The implemented classes and functions are related to the analysis of data tables containing histograms in each cell instead of the classical numeric values.

In this document we describe the main features of the HistDAWass package. The name is the acronym for Histogram-valued Data analysis using Wasserstein metric. The implemented classes and functions are related to the anlysis of data tables containing histograms in each cell instead of the classical numeric values.

What is the L2 Wasserstein metric?

given two probability density functions f and g, each one has a cumulative distribution function F and G and thei respectively quantile functions (the inverse of a cumulative distribution function) Qf and Qg. The L2 Wasserstein distance is

The implemented classes are those described in the following table

Class wrapper function for initializing Description
distributionH distributionH(x,p) A class describing a histogram distibution
MatH MatH(x, nrows, ncols,rownames,varnames, by.row ) A class describing a matrix of distributions
TdistributionH TdistributionH() A class derived from distributionH equipped with a timestamp or a time window
HTS HTS() A class describing a Histgram-valued time series
library(HistDAWass)
mydist=distributionH(x=c(0,1,2),p=c(0,0.3,1))

From raw data to histograms

data2hist functions

Basic statistics for a distributionH (A histogram)

Basic statistics for a MatH (A matrix of histogrm-valued data)

Visualization > plot of a distributionH

plot of a MatH

plot of a HTS

Data Analysis methods

Clustering

Dimension reduction techniques

Methods for Histogram time series

Smoothing

Forecasting

Linear regression

A two component model for a linear regression using Least Square method

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.