The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Load HYPEtools Package and Import Files
Look at names of Soil and Land Use Classes
# Read Comment in GeoClass.txt
comment(gcl)
#> [1] "!Landuses: 1=Water; 2=Coniferous forest; 3=Agricultural land\t\t\t\t\t\t\t\t\t\t\t\t\t"
#> [2] "!Soils: 1=Fine soil; 2=Coarse soil\t\t\t\t\t\t\t\t\t\t\t\t\t"
#> [3] "!Combination\tLanduse\tSoil\tCropid-main\tCropid-2nd\tRotation\tVegetationstyp\tSpecial-class\tTile-depth\tDrain-depth\t#Soil-layers\tDepth1\tDepth2\tDepth3"
Summarize fractions for the whole drainage area upstream of the gauge.
# Select SUBID for which you want to summarize the upstream characteristics
Qobs.sbd <- 3587
# Upstream soil fractions in percent
sof <- as.numeric(UpstreamGroupSLCClasses(subid = Qobs.sbd, gd = gd, gc = gcl, type = "soil", progbar = FALSE)[, -1] * 100)
# Show how many classes are in each soil category
length(sof)
#> [1] 2
# Calculate how many soil classes have a value greater than 0
sum(sof != 0)
#> [1] 2
# Add names for soil categories
names(sof) <- c("Fine soil", "Coarse soil")
# Display the upstream soil percentages
sof
#> Fine soil Coarse soil
#> 95.30 4.74
Summarize fractions for the whole drainage area upstream of the gauge.
# Select SUBID for which you want to summarize the upstream characteristics
Qobs.sbd <- 3587
# Upstream land use fractions in percent
luf <- as.numeric(UpstreamGroupSLCClasses(subid = Qobs.sbd, gd = gd, gc = gcl, type = "landuse", progbar = FALSE)[, -1] * 100)
# Show how many land use classes there are
length(luf)
#> [1] 3
# Calculate how many land use classes have a value greater than 0
sum(luf != 0)
#> [1] 3
# Add names for land use categories
names(luf) <- c("Water", "Coniferous", "Agriculture")
# Display the upstream land use percentages
luf
#> Water Coniferous Agriculture
#> 7.13 81.90 10.90
Plot fractions for the whole drainage area upstream of the gauge.
# Plot Upstream Soil Fractions
barplot(sof, ylab = "Area (%)", names.arg = "", col = "red", ylim = c(0, 100), xlab = "Soil fraction")
mtext(text = names(sof), side = 3, at = seq(.7, by = 1.2, length.out = 5), line = -.1, padj = .5, cex = .9, las = 3, adj = 1)
mtext(Qobs.sbd, side = 1, adj = 0, font = 3)
box()
# Plot Upstream Land Use Fractions
barplot(luf, ylab = "Area (%)", names.arg = "", col = "green", ylim = c(0, 100), xlab = "Land use fraction")
mtext(text = names(luf), side = 3, at = seq(.7, by = 1.2, length.out = 8), line = -.1, padj = .5, cex = .9, las = 3, adj = 1)
mtext(Qobs.sbd, side = 1, adj = 0, font = 3)
box()
This summarizes the soil and land use fractions for the total upstream area for each subbasin.
# Get a vector of all subids in the model from GeoData
sbd <- gd$SUBID
# Summarize upstream soils
sof.all <- UpstreamGroupSLCClasses(gd = gd, gcl = gcl, type = "soil", progbar = FALSE)[, -1] * 100
sof.all <- cbind("SUBID" = sbd, sof.all)
sof.all
#> SUBID soil_1 soil_2
#> 1 3344 84.8 15.3000
#> 2 3396 99.9 0.0623
#> 3 3407 99.8 0.1610
#> 4 3466 90.3 9.6900
#> 5 3558 99.9 0.1090
#> 6 3555 99.4 0.5550
#> 7 3607 100.0 0.0000
#> 8 63804 92.4 7.6200
#> 9 63931 96.7 3.3200
#> 10 3564 96.6 3.4200
#> 11 3581 93.6 6.3600
#> 12 3547 95.0 4.9800
#> 13 3594 95.3 4.7300
#> 14 40556 94.0 6.0400
#> 15 40541 94.4 5.6400
#> 16 3486 94.6 5.4000
#> 17 3361 94.7 5.3000
#> 18 3427 96.2 3.8200
#> 19 3435 95.7 4.3500
#> 20 3432 95.2 4.8000
#> 21 63794 94.9 5.1300
#> 22 63938 98.3 1.7500
#> 23 63937 95.2 4.8300
#> 24 3532 95.3 4.7000
#> 25 3587 95.3 4.7400
# Summarize upstream land use
luf.all <- UpstreamGroupSLCClasses(gd = gd, gcl = gcl, type = "landuse", progbar = FALSE)[, -1] * 100
luf.all <- cbind("SUBID" = sbd, luf.all)
luf.all
#> SUBID landuse_1 landuse_2 landuse_3
#> 1 3344 1.30 85.2 13.600
#> 2 3396 10.80 74.2 15.000
#> 3 3407 10.70 73.6 15.800
#> 4 3466 3.89 80.2 15.900
#> 5 3558 26.10 73.4 0.497
#> 6 3555 11.80 83.7 4.500
#> 7 3607 7.80 91.3 0.920
#> 8 63804 6.73 84.1 9.200
#> 9 63931 12.70 81.3 6.060
#> 10 3564 12.60 81.2 6.180
#> 11 3581 3.18 90.0 6.860
#> 12 3547 7.33 86.3 6.400
#> 13 3594 7.04 86.9 6.080
#> 14 40556 6.25 84.6 9.200
#> 15 40541 6.71 83.8 9.450
#> 16 3486 6.55 83.4 10.000
#> 17 3361 14.00 85.3 0.745
#> 18 3427 11.60 87.8 0.593
#> 19 3435 12.50 85.1 2.450
#> 20 3432 8.54 84.0 7.440
#> 21 63794 6.66 83.3 10.000
#> 22 63938 7.70 80.4 11.900
#> 23 63937 6.75 83.1 10.200
#> 24 3532 7.18 82.0 10.800
#> 25 3587 7.13 81.9 10.900
This summarizes the soil and land use fractions within just each subbasin area.
# Summarize subbasin soils
sof.sbd.all <- GroupSLCClasses(gd = gd, gcl = gcl, type = "soil", verbose = FALSE)[, -1] * 100
sof.sbd.all <- cbind("SUBID" = sbd, sof.sbd.all)
sof.sbd.all
#> SUBID AREA soil_1 soil_2
#> 1 3344 2012608500 84.7500 15.2501
#> 2 3396 1112100200 99.9376 0.0623
#> 3 3407 10551800 89.4554 10.5444
#> 4 3466 2359837800 90.5252 9.4750
#> 5 3558 154308900 99.8914 0.1087
#> 6 3555 187596400 99.0778 0.9220
#> 7 3607 1563873200 100.0000 0.0000
#> 8 63804 853734600 92.3847 7.6151
#> 9 63931 1762503100 95.8143 4.1858
#> 10 3564 14564400 69.1240 30.8759
#> 11 3581 6261965800 93.6349 6.3648
#> 12 3547 615319700 98.4508 1.5492
#> 13 3594 1226245300 97.5376 2.4621
#> 14 40556 3592919600 94.5337 5.4660
#> 15 40541 1632334200 99.7367 0.2632
#> 16 3486 1073738400 99.6694 0.3307
#> 17 3361 1070852700 94.6982 5.3018
#> 18 3427 480763600 99.4852 0.5149
#> 19 3435 1216238400 94.9739 5.0261
#> 20 3432 1739028400 94.4824 5.5178
#> 21 63794 1259415200 98.8926 1.1073
#> 22 63938 2913067100 98.2519 1.7482
#> 23 63937 7209200 99.7633 0.2366
#> 24 3532 1098516200 99.5008 0.4992
#> 25 3587 231451000 88.2830 11.7169
# Summarize subbasin land use
luf.sbd.all <- GroupSLCClasses(gd = gd, gcl = gcl, type = "landuse", verbose = FALSE)[, -1] * 100
luf.sbd.all <- cbind("SUBID" = sbd, luf.sbd.all)
luf.sbd.all
#> SUBID AREA landuse_1 landuse_2 landuse_3
#> 1 3344 2012608500 1.2984 85.1508 13.5509
#> 2 3396 1112100200 10.7671 74.2386 14.9942
#> 3 3407 10551800 0.0000 2.7361 97.2637
#> 4 3466 2359837800 2.8875 79.2264 17.8863
#> 5 3558 154308900 26.0620 73.4415 0.4966
#> 6 3555 187596400 0.0000 92.2010 7.7988
#> 7 3607 1563873200 7.8028 91.2776 0.9196
#> 8 63804 853734600 6.7265 84.0698 9.2035
#> 9 63931 1762503100 19.8918 71.0023 9.1060
#> 10 3564 14564400 0.0000 59.9522 40.0477
#> 11 3581 6261965800 3.1752 89.9599 6.8646
#> 12 3547 615319700 13.4997 83.4072 3.0931
#> 13 3594 1226245300 4.3993 92.3861 3.2143
#> 14 40556 3592919600 6.6157 83.2779 10.1061
#> 15 40541 1632334200 12.8052 74.3974 12.7973
#> 16 3486 1073738400 3.2067 73.8250 22.9684
#> 17 3361 1070852700 13.9634 85.2920 0.7446
#> 18 3427 480763600 6.2788 93.4668 0.2545
#> 19 3435 1216238400 13.6581 81.5245 4.8174
#> 20 3432 1739028400 2.2440 82.3727 15.3835
#> 21 63794 1259415200 2.0353 79.5062 18.4584
#> 22 63938 2913067100 7.6999 80.3565 11.9437
#> 23 63937 7209200 0.0000 78.0271 21.9728
#> 24 3532 1098516200 20.0171 49.3721 30.6108
#> 25 3587 231451000 0.0000 74.7462 25.2537
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.