The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

HTT: Hypothesis Testing Tree

Regression Tree

data("Boston", package = "MASS")
# set the p-value of the permutation test to 0.01
htt_boston <- HTT(medv ~ . , data = Boston, controls = htt_control(pt = 0.01))
htt_boston
#      Hypothesis Testing Tree 
# 
# node, split, n, pvalue
# * denotes terminal node
# 
# [1] root   (n = 506, pvalue = 0)
# |  [2] rm<=7.437   (n = 476, pvalue = 0)
# |  |  [4] lstat<=15   (n = 314, pvalue = 0)
# |  |  |  [6] rm<=6.797   (n = 256, pvalue = 0)
# |  |  |  |  [8] lstat<=4.615   (n = 10) *
# |  |  |  |  [9] lstat>4.615   (n = 246, pvalue = 0)
# |  |  |  |  |  [12] rm<=6.543   (n = 212, pvalue = 0)
# |  |  |  |  |  |  [14] lstat<=7.57   (n = 42) *
# |  |  |  |  |  |  [15] lstat>7.57   (n = 170) *
# |  |  |  |  |  [13] rm>6.543   (n = 34) *
# |  |  |  [7] rm>6.797   (n = 58) *
# |  |  [5] lstat>15   (n = 162, pvalue = 0)
# |  |  |  [10] crim<=0.65402   (n = 46) *
# |  |  |  [11] crim>0.65402   (n = 116, pvalue = 0)
# |  |  |  |  [16] crim<=11.36915   (n = 77) *
# |  |  |  |  [17] crim>11.36915   (n = 39) *
# |  [3] rm>7.437   (n = 30) *
# print the split information
htt_boston$frame
#    node parent leftChild rightChild  statistic pval    split     var isleaf   n
# 1     1      0         2          3 2258.92680 0.00    7.437      rm      0 506
# 2     2      1         4          5 1126.14057 0.00       15   lstat      0 476
# 3     3      1        NA         NA   54.73540   NA   <leaf> ptratio      1  30
# 4     4      2         6          7  750.08329 0.00    6.797      rm      0 314
# 5     5      2        10         11  201.23810 0.00  0.65402    crim      0 162
# 6     6      4         8          9  284.52923 0.00    4.615   lstat      0 256
# 7     7      4        NA         NA   54.33706   NA   <leaf>   lstat      1  58
# 8     8      6        NA         NA    0.00000   NA   <leaf>    <NA>      1  10
# 9     9      6        12         13  188.93990 0.00    6.543      rm      0 246
# 10   10      5        NA         NA   73.70296   NA   <leaf>     dis      1  46
# 11   11      5        16         17  115.47482 0.00 11.36915    crim      0 116
# 12   12      9        14         15  126.15810 0.00     7.57   lstat      0 212
# 13   13      9        NA         NA   20.83679   NA   <leaf>     nox      1  34
# 14   14     12        NA         NA   12.63760   NA   <leaf>     dis      1  42
# 15   15     12        NA         NA   66.02809   NA   <leaf>    crim      1 170
# 16   16     11        NA         NA   32.28858   NA   <leaf>   lstat      1  77
# 17   17     11        NA         NA   76.00906 0.02   <leaf>     nox      1  39
#        yval
# 1  22.53281
# 2  21.11071
# 3  45.09667
# 4  24.45924
# 5  14.62037
# 6  22.73242
# 7  32.08103
# 8  33.13000
# 9  22.30976
# 10 18.32826
# 11 13.15000
# 12 21.68821
# 13 26.18529
# 14 23.95000
# 15 21.12941
# 16 14.35195
# 17 10.77692
# Visualize HTT
plot(htt_boston)

Classification Tree

htt_iris <- HTT(Species ~., data = iris, controls = htt_control(pt = 0.01))
plot(htt_iris, layout = "tree")

# prediction 
table(predict(htt_iris), iris[, 5])
#             
#              setosa versicolor virginica
#   setosa         50          0         0
#   versicolor      0         49         5
#   virginica       0          1        45

Multivariate regression Tree

data("ENB")
set.seed(1)
idx = sample(1:nrow(ENB), floor(nrow(ENB)*0.8))
train = ENB[idx, ]
test = ENB[-idx, ]
htt_enb = HTT(cbind(Y1, Y2) ~ . , data = train, controls = htt_control(pt = 0.05, R = 99))
# prediction
pred = predict(htt_enb, newdata = test)
test_y = test[, 9:10]
# MAE
colMeans(abs(pred - test_y))
#        Y1        Y2 
# 0.4808483 1.2228675
# MSE
colMeans(abs(pred - test_y)^2)
#       Y1       Y2 
# 1.039948 3.594125

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.