The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
data("Boston", package = "MASS")
# set the p-value of the permutation test to 0.01
<- HTT(medv ~ . , data = Boston, controls = htt_control(pt = 0.01))
htt_boston htt_boston
# Hypothesis Testing Tree
#
# node, split, n, pvalue
# * denotes terminal node
#
# [1] root (n = 506, pvalue = 0)
# | [2] rm<=7.437 (n = 476, pvalue = 0)
# | | [4] lstat<=15 (n = 314, pvalue = 0)
# | | | [6] rm<=6.797 (n = 256, pvalue = 0)
# | | | | [8] lstat<=4.615 (n = 10) *
# | | | | [9] lstat>4.615 (n = 246, pvalue = 0)
# | | | | | [12] rm<=6.543 (n = 212, pvalue = 0)
# | | | | | | [14] lstat<=7.57 (n = 42) *
# | | | | | | [15] lstat>7.57 (n = 170) *
# | | | | | [13] rm>6.543 (n = 34) *
# | | | [7] rm>6.797 (n = 58) *
# | | [5] lstat>15 (n = 162, pvalue = 0)
# | | | [10] crim<=0.65402 (n = 46) *
# | | | [11] crim>0.65402 (n = 116, pvalue = 0)
# | | | | [16] crim<=11.36915 (n = 77) *
# | | | | [17] crim>11.36915 (n = 39) *
# | [3] rm>7.437 (n = 30) *
# print the split information
$frame htt_boston
# node parent leftChild rightChild statistic pval split var isleaf n
# 1 1 0 2 3 2258.92680 0.00 7.437 rm 0 506
# 2 2 1 4 5 1126.14057 0.00 15 lstat 0 476
# 3 3 1 NA NA 54.73540 NA <leaf> ptratio 1 30
# 4 4 2 6 7 750.08329 0.00 6.797 rm 0 314
# 5 5 2 10 11 201.23810 0.00 0.65402 crim 0 162
# 6 6 4 8 9 284.52923 0.00 4.615 lstat 0 256
# 7 7 4 NA NA 54.33706 NA <leaf> lstat 1 58
# 8 8 6 NA NA 0.00000 NA <leaf> <NA> 1 10
# 9 9 6 12 13 188.93990 0.00 6.543 rm 0 246
# 10 10 5 NA NA 73.70296 NA <leaf> dis 1 46
# 11 11 5 16 17 115.47482 0.00 11.36915 crim 0 116
# 12 12 9 14 15 126.15810 0.00 7.57 lstat 0 212
# 13 13 9 NA NA 20.83679 NA <leaf> nox 1 34
# 14 14 12 NA NA 12.63760 NA <leaf> dis 1 42
# 15 15 12 NA NA 66.02809 NA <leaf> crim 1 170
# 16 16 11 NA NA 32.28858 NA <leaf> lstat 1 77
# 17 17 11 NA NA 76.00906 0.02 <leaf> nox 1 39
# yval
# 1 22.53281
# 2 21.11071
# 3 45.09667
# 4 24.45924
# 5 14.62037
# 6 22.73242
# 7 32.08103
# 8 33.13000
# 9 22.30976
# 10 18.32826
# 11 13.15000
# 12 21.68821
# 13 26.18529
# 14 23.95000
# 15 21.12941
# 16 14.35195
# 17 10.77692
# Visualize HTT
plot(htt_boston)
<- HTT(Species ~., data = iris, controls = htt_control(pt = 0.01))
htt_iris plot(htt_iris, layout = "tree")
# prediction
table(predict(htt_iris), iris[, 5])
#
# setosa versicolor virginica
# setosa 50 0 0
# versicolor 0 49 5
# virginica 0 1 45
data("ENB")
set.seed(1)
= sample(1:nrow(ENB), floor(nrow(ENB)*0.8))
idx = ENB[idx, ]
train = ENB[-idx, ]
test = HTT(cbind(Y1, Y2) ~ . , data = train, controls = htt_control(pt = 0.05, R = 99))
htt_enb # prediction
= predict(htt_enb, newdata = test)
pred = test[, 9:10]
test_y # MAE
colMeans(abs(pred - test_y))
# Y1 Y2
# 0.4808483 1.2228675
# MSE
colMeans(abs(pred - test_y)^2)
# Y1 Y2
# 1.039948 3.594125
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.