The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
f.criterion
from
tpr.dag.cv
, tpr.dag.holdout
,
find.best.f
and compute.fmax
: type of
F-measure used to select the best F-measure is always the harmonic mean
between the average precision and recall (f.criterion="F"
)
and never the F-measure computed as average across examples
(f.criterion="avF"
);tpr.dag.holdout
;tpr.dag.cv
and
tpr.dag.holdout
;build.scores.matrix.from.list
;build.scores.matrix.from.tupla
;Do.HTD
–> htd.vanilla
;Do.HTD.holdout
–> htd.holdout
;heuristic.max
–> obozinski.max
;heuristic.and
–> obozinski.and
;heuristic.or
–> obozinski.or
;Do.heuristic.methods
–>
obozinski.methods
;Do.heuristic.methods.holdout
–>
obozinski.holdout
;GPAV
–> gpav
;GPAV.over.examples
–>
gpav.over.examples
;GPAV.parallel
–> gpav.parallel
;Do.GPAV
–> gpav.vanilla
;Do.GPAV.holdout
–> gpav.holdout
;TPR.DAG
–> tpr.dag
;Do.TPR.DAG
–> tpr.dag.cv
;Do.TPR.DAG.holdout
–>
tpr.dag.holdout
;get.parents
–> build.parents
;get.parents.top.down
–>
build.parents.top.down
;get.parents.bottom.up
–>
build.parents.bottom.up
;get.parents.topological.sorting
–>
build.parents.topological.sorting
;get.children.top.down
–>
build.children.top.down
;get.children.bottom.up
–>
build.children.bottom.up
;check.DAG.integrity
–>
check.dag.integrity
;do.subgraph
–> build.subgraph
;do.submatrix
–> build.submatrix
;do.stratified.cv.data.single.class
–>
stratified.cv.data.single.class
;do.stratified.cv.data.over.classes
–>
stratified.cv.data.over.classes
;do.unstratified.cv.data
–>
unstratified.cv.data
;do.edges.from.HPO.obo
–>
build.edges.from.hpo.obo
;AUPRC.single.class
–>
auprc.single.class
;AUPRC.single.over.classes
–>
auprc.single.over.classes
;AUROC.single.class
–>
auroc.single.class
;AUROC.single.over.classes
–>
auroc.single.over.classes
;compute.Fmeasure.multilabel
–>
compute.fmax
;Do.flat.scores.normalization
;Do.full.annotation.matrix
;stringsAsFactors
issue – link;obogaf::parser
;build.consistent.graph
;Do.GPAV.holdout
;precision.at.all.recall.levels.single.class
(labels are all
negatives/positives);precision.at.given.recall.levels.over.classes
(labels in a
fold are all negatives/positives);do.stratified.cv.data.single.class
(sampling of the labels
with just one positive/negative);compute.performance
to the following
high level functions:
Do.TPR.DAG
and Do.TPR.DAG.holdout
;Do.HTD
and Do.HTD.holdout
;Do.GPAV
and Do.GPAV.holdout
;Do.heuristic.methods
and
Do.heuristic.methods.holdout
;lexicographical.topological.sort
;precrec
package:
precision.at.all.recall.levels.single.class
;PXR.at.multiple.recall.levels.over.classes
–>
precision.at.given.recall.levels.over.classes
;.txt
) or compressed
(.gz
);CRAN
Package Check Results: remove unneeded header
and define from GPAV C++
source codeGPAV
algorithm (Burdakov et al., Journal of
Computational Mathematics, 2006 – link);GPAV
algorithm in the top-down step of the
functions TPR.DAG
, Do.TPR.DAG
and
Do.TPR.DAG.holdout
;help("HEMDAG-defunct")
;C++
code of GPAV
algorithm;compute.Fmeasure.multilabel
;PXR.at.multiple.recall.levels.over.classes
;AUPRC
, AUROC
,
FMM
, PXR
) can be computed either
one-shot or averaged across
folds;metric
: maximization by
FMAX
or PRC
(see manual for further
details);do.stratified.cv.data.single.class
;add TPR-DAG
: function gathering several hierarchical
ensemble variants;
add Do.TPR.DAG
: high-level function to run
TPR-DAG
cross-validated
experiments;
add Do.TPR.DAG.holdout
: high-level functions to run
TPR-DAG
holdout experiments;
The following TPR-DAG
and DESCENS
high-level functions were remove:
Do.tpr.threshold.free
;Do.tpr.threshold.cv
;Do.tpr.weighted.threshold.free.cv
;Do.tpr.weighted.threshold.cv
;Do.descens.threshold.free
;Do.descens.threshold.cv
;Do.descens.weighted.threshold.free.cv
;Do.descens.tau.cv
;Do.descens.weighted.threshold.cv
;Do.tpr.threshold.free.holdout
;Do.tpr.threshold.holdout
;Do.tpr.weighted.threshold.free.holdout
;Do.tpr.weighted.threshold.holdout
;Do.descens.threshold.free.holdout
;Do.descens.threshold.holdout
;Do.descens.weighted.threshold.free.holdout
;Do.descens.tau.holdout
;Do.descens.weighted.threshold.holdout
;NOTE: all the removed functions can be run opportunely by setting the input parameters of the new high-level function
Do.TPR.DAG
(for cross-validated experiments) andDo.TPR.DAG.holdout
(for hold-out experiments);
DESCENS
algorithm;Max
, And
,
Or
(Obozinski et al., Genome Biology, 2008 – link);tupla.matrix
function;HPOparser
(note: from
version 2.6.0
HPOparser
was changed in
obogaf::parser
);CITATION
file;These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.