The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

HCTR

The goal of HCTR is to create a new searching scheme for the regularization parameter in penalized regression, such as Lasso, adaptive Lasso, SCAD, and MCP.

Example

This is a basic example which shows you how to (1) estimate false null hypothesis proportion, and (2) create a new tuning region for the regularization parameter.

## basic example code
library('HCTR')
# 1. Estimate proportion
set.seed(10)
X <- matrix(runif(n = 10000, min = 0, max = 1), nrow = 100)
result <- bounding.seq(p.value = X)
Y <- matrix(runif(n = 100, min = 0, max = 1), nrow = 100)
test <- est.prop(p.value = Y, cn = result)
# 2. Estimate a new tuning region
set.seed(10)
X <- matrix(rnorm(20000), nrow = 100)
beta <- rep(0, 200)
beta[1:100] <- 5
Y <- MASS::mvrnorm(n = 1, mu = X%*%beta, Sigma = diag(100))
fit <- glmnet::cv.glmnet(x = X, y = Y)
pihat <- 0.01
result <- est.lambda(cv.fit = fit, pihat = pihat, p = ncol(X))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.