The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Now we move forward to a semi-distributed catchment case. This means that we are conceiving the basin as a set of homogeneous polygons that are selected by some criteria; in any basin the hydrologist is faced with a variety of geology, soils, vegetation, land use and topographic characteristics that affects the precipitation-runoff generation. One possible solution to deal with such a complexity is to consider that there are some sectors that behave (e.g.: in terms of runoff generation) in a similar way, hence we can split the basin in what the modeler can consider as hydrological homogeneous areas. As you can imagine, the criteria is not unique and depends on many factors: modeling objectives, knowledge about the runoff generation processes in the catchment, available input data and numerical models, among others (K. J. Beven 2012).
In this case study we are going to work on a perfect fit case (again
a synthetic basin). The catchment has been discretised in elevation
bands (keeping in mind a mountain basin case).
After this vignette is expect that you:
library(HBV.IANIGLA)
data("semi_distributed_hbv")
str(semi_distributed_hbv)
#> List of 5
#> $ basin:'data.frame': 15 obs. of 4 variables:
#> ..$ elev_band: chr [1:15] "eb_1" "eb_2" "eb_3" "eb_4" ...
#> ..$ area(km2): num [1:15] 10 15 17 20 25 18 17 16 14 12 ...
#> ..$ rel_area : num [1:15] 0.0535 0.0802 0.0909 0.107 0.1337 ...
#> ..$ h(masl) : num [1:15] 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 ...
#> $ tair : num [1:5310, 1:15] 24.4 26.9 27 24.5 22.1 ...
#> $ prec : num [1:5310, 1:15] 0 0 0 0 0 0 0 0 0 0 ...
#> $ pet : num [1:5310, 1:15] 0 0.999 0.997 0.993 0.988 ...
#> $ qout : num [1:5310] 0e+00 0e+00 0e+00 2e-04 5e-04 4e-04 4e-04 4e-04 4e-04 4e-04 ...
#> - attr(*, "comment")= chr "Semi-distributed HBV model input data"
To get more details about the dataset just type
?semi_distributed_hbv
For this exercise is supposed that we have just one type of vegetation soil and that the runoff generation is controlled by the snow accumulation and melting process. As this basin is located in a mountain region, we consider a mean and homogeneous snowpack evolution within a pre-defined elevation range.
## brief arguments description
# basin: data frame with the same structure of the data("semi_distributed_hbv) (colnames included).
# tair: numeric matrix with air temperature inputs.
# precip: numeric matrix with precipitation inputs.
# pet: numeric matrix with potential eavapotranspiration inputs.
# param_snow: numeric vector with snow module parameters.
# param_soil: numeric vector with soil moisture parameters.
# param_routing: numeric vector with the routing parameters.
# param_tf: numeric vector with the transfer function parameter.
# init_snow: numeric value with initial snow water equivalent. Default value being 20 mm.
# init_soil: numeric value with initial soil moisture content. Default value being 100 mm.
# init_routing: numeric vector with bucket water initial values. Default values are 0 mm.
## output
# simulated streamflow series.
<- function(basin,
hydrological_hbv
tair,
precip,
pet,
param_snow,
param_soil,
param_route,
param_tf,init_snow = 20,
init_soil = 0,
init_routing = c(0, 0, 0)
){<- nrow(basin)
n_it
# create output lists
<- list()
snow_module <- list()
soil_module <- list()
route_module <- list()
tf_module
# snow and soil module in every elevation band
for(i in 1:n_it){
<-
snow_module[[ i ]] SnowGlacier_HBV(model = 1, inputData = cbind(tair[ , i], precip[ , i]),
initCond = c(init_snow, 2), param = param_snow)
<-
soil_module[[ i ]] Soil_HBV(model = 1, inputData = cbind(snow_module[[i]][ , 5] , pet[ , i]),
initCond = c(init_soil, basin[i, 'rel_area']), param = param_soil )
# end for
}
# get total soil discharge
<- lapply(X = 1:n_it, FUN = function(x){
soil_disch <- soil_module[[x]][ , 1]
out
})<- Reduce(f = `+`, x = soil_disch)
soil_disch
# route module
<- Routing_HBV(model = 1, lake = F, inputData = as.matrix(soil_disch),
route_module initCond = init_routing, param = param_route )
# transfer function
<- round(
tf_module UH(model = 1, Qg = route_module[ , 1], param = param_tf), 4
)
return(tf_module)
# end fun }
As in the Lumped model case, this is just a way of constructing an HBV semi-distributed model but not the only one.
In the next lines I will show you how to generate many parameter sets in order to get close to the correct one. Remember that we are talking about the correct parameter set because is a synthetic case. In real world problems this will not be the case.
The calibrating issue has been focus of a lot of debate and research in the hydrological modeling field, I recommend the following material for the interested reader:
- A manifesto for the equifinality thesis (K. Beven 2006).
- Sensitivity analysis of environmental models: A systematic review with practical workflow (Pianosi et al. 2016).
- Rainfall-runoff modelling (K. J. Beven 2012).
- Environmental Modelling: An Uncertain Future? (K. Beven 2008).
# first we are going to create set the parameter range
# snow module
<- rbind(
snow_range sfcf = c(0, 1.5),
tr = c(-1, 1),
tt = c(0, 3),
fm = c(1.5, 4)
)
# soil module
<- rbind(
soil_range fc = c(100, 200),
lp = c(0.5, 1),
beta = c(1, 3)
)
# routing module (here I will give you the correct values)
<- rbind(
routing_range k0 = c(0.09, 0.09),
k1 = c(0.07, 0.07),
k2 = c(0.05, 0.05),
uzl = c(5, 5),
perc = c(2, 2)
)
# transfer function module (I will give the correct value)
<- rbind(
tf_range bmax = c(2.25, 2.25)
)
Then we are going to condense the parameter ranges in a matrix,
<-
param_range rbind(
snow_range,
soil_range,
routing_range,
tf_range
)
head(param_range)
#> [,1] [,2]
#> sfcf 0.0 1.5
#> tr -1.0 1.0
#> tt 0.0 3.0
#> fm 1.5 4.0
#> fc 100.0 200.0
#> lp 0.5 1.0
In the next step we will generate random sets of parameters. Then we will use them to run the model and save our goodness of fit function,
# set the number of model runs that you want to try
<- 1000
n_run
# build the matrix
<- nrow(param_range)
n_it
<- matrix(NA_real_, nrow = n_run, ncol = n_it)
param_sets
colnames(param_sets) <- rownames(param_range)
for(i in 1:n_it){
<- runif(n = n_run,
param_sets[ , i] min = param_range[i, 1],
max = param_range[i, 2]
)
}
head(param_sets)
#> sfcf tr tt fm fc lp beta k0
#> [1,] 0.2808843 -0.1988102 2.248042 1.670547 127.2266 0.7437620 1.130969 0.09
#> [2,] 0.2514527 0.4926597 1.752910 3.756478 142.2262 0.5810407 2.783933 0.09
#> [3,] 0.9610129 -0.1669551 2.128964 2.645919 163.3129 0.9437365 1.434353 0.09
#> [4,] 1.4435390 -0.1261128 2.732200 1.764122 184.6563 0.5170997 1.513836 0.09
#> [5,] 0.9952805 -0.1296802 1.149875 2.874869 139.4242 0.8517132 2.989876 0.09
#> [6,] 0.4596527 -0.1342559 2.927786 3.815124 141.1265 0.5239499 1.216035 0.09
#> k1 k2 uzl perc bmax
#> [1,] 0.07 0.05 5 2 2.25
#> [2,] 0.07 0.05 5 2 2.25
#> [3,] 0.07 0.05 5 2 2.25
#> [4,] 0.07 0.05 5 2 2.25
#> [5,] 0.07 0.05 5 2 2.25
#> [6,] 0.07 0.05 5 2 2.25
Finally we run our semi-distributed model,
# goodness of fit vector
<- c()
gof
# make a loop
for(i in 1:n_run){
<- hydrological_hbv(
streamflow basin = semi_distributed_hbv$basin,
tair = semi_distributed_hbv$tair,
precip = semi_distributed_hbv$prec,
pet = semi_distributed_hbv$pet,
param_snow = param_sets[i, rownames(snow_range) ],
param_soil = param_sets[i, rownames(soil_range)],
param_route = param_sets[i, rownames(routing_range)],
param_tf = param_sets[i, rownames(tf_range)]
)
<- cor(x = streamflow, y = semi_distributed_hbv$qout)
gof[i]
}
<- cbind(param_sets, gof)
param_sets
head(param_sets)
#> sfcf tr tt fm fc lp beta k0
#> [1,] 0.2808843 -0.1988102 2.248042 1.670547 127.2266 0.7437620 1.130969 0.09
#> [2,] 0.2514527 0.4926597 1.752910 3.756478 142.2262 0.5810407 2.783933 0.09
#> [3,] 0.9610129 -0.1669551 2.128964 2.645919 163.3129 0.9437365 1.434353 0.09
#> [4,] 1.4435390 -0.1261128 2.732200 1.764122 184.6563 0.5170997 1.513836 0.09
#> [5,] 0.9952805 -0.1296802 1.149875 2.874869 139.4242 0.8517132 2.989876 0.09
#> [6,] 0.4596527 -0.1342559 2.927786 3.815124 141.1265 0.5239499 1.216035 0.09
#> k1 k2 uzl perc bmax gof
#> [1,] 0.07 0.05 5 2 2.25 0.9349033
#> [2,] 0.07 0.05 5 2 2.25 0.9104437
#> [3,] 0.07 0.05 5 2 2.25 0.9961141
#> [4,] 0.07 0.05 5 2 2.25 0.9797558
#> [5,] 0.07 0.05 5 2 2.25 0.9882781
#> [6,] 0.07 0.05 5 2 2.25 0.9600641
Is time to extract the parameter set with the maximum gof value,
# get the row index
<- which.max(param_sets[ , "gof"])
max_gof
# extract the parameter set
<- param_sets[max_gof, ]
param_opt
param_opt#> sfcf tr tt fm fc lp
#> 1.07377743 0.02083456 1.15235790 1.92040776 145.75885478 0.95564897
#> beta k0 k1 k2 uzl perc
#> 1.46933269 0.09000000 0.07000000 0.05000000 5.00000000 2.00000000
#> bmax gof
#> 2.25000000 0.99744171
Now compare your best parameter set with the ones that I used to generate the catchment streamflow output,
param_snow = c(sfcf = 1.1, tr = 0, tt = 0, fm = 1.75)
param_soil = c(fc = 150, lp = 0.90, beta = 1.5)
Now is your turn
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.