The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In the previous chapters we deal with ideal or synthetic cases. This purely academic examples, were though as a gentle (and pedagogical) introduction to the HBV.IANIGLA package. In this chapter we are going to face our first real world case: the simulation of a glacier surface mass balance.
The simulation of glacier mass balances is relevant in the Andes Cordillera, where these ice bodies have an important contribution to catchment discharge (Pellicciotti et al. 2008; Ragettli and Pellicciotti 2012; La Frenierre and Mark 2014; A. Ayala et al. 2016; Masiokas et al. 2016; Á. Ayala et al. 2020).
In mountain areas with scarce meteorological information, temperature index models are widely used to simulate snow and ice melting (Hock 2003; Konz and Seibert 2010; Finger et al. 2015; A. Ayala et al. 2017; Bravo et al. 2017). Since air temperature is the most readily available meteorological data in remote areas, the temperature index approach has been widely used in glaciological and hydrological modeling (Ohmura 2001). This package has been built with the SnowGlacier_HBV function, a module that uses this empirical approach to simulate snow, clean ice and debris covered melting.
In this section, we simulate the glacier mass balance for the Alerce glacier. Located on Monte Tronador (41.15º S ; 71.88º W), nearby the border between Argentina and Chile in the Andes of Northern Patagonia, Alerce is a medium size mountain glacier with an area of about 2.33 km2 that ranges between 1629 and 2358 m elevation showing a SE aspect (Ruiz et al. 2017; IANIGLA-ING 2018).
Since 2013 it is part of the monitoring network of the Inventario
Nacional de Glaciares (IANIGLA-ING
2010). Measurements are carried out following the glaciological
method for seasonal mass balance computation (Kaser, Fountain, and Jansson 2003).
Precipitation series from Puerto Montt (Dirección General de Aguas,
Chile) and air temperature series from Bariloche (Servicio
Meteorológico Nacional - Argentina) were used as meteorological
forcing to simulate the annual glacier mass balance
(data(alerce_data)
).
When calibrating the model parameters, we considered as acceptable simulations those showing an annual mass balance in the range of MB ± 400 mm, where MB is the glacier annual mass balance.
library(HBV.IANIGLA)
## loading the data-set
data(alerce_data)
# now extract
<- alerce_data$meteo_data # meteorological forcing series
meteo_data <- alerce_data$mass_balance # annual glacier mass balances
mass_balance <- alerce_data$mb_dates # fix seasonal dates
mb_dates <- alerce_data$topography # elevation bands
gl_topo
<- alerce_data$station_height[1] # topographic elevation air temp.
z_tair <- alerce_data$station_height[2] # topographic elevation of precipitation gauge
z_precip
Despite the fact that we have a global surface mass balance estimation (derived from measurements), in order to take into consideration the topographic effect on it, we discretised our ice body in elevation bands. This mean that we have to build a semi-distributed glacier surface mass balance model.
# in this example we incorporate the precipitation and
# air temperature extrapolation functions into our model
## agruments description
# topograpphy: data frame with the elevation bands (gl_topo in this script).
# meteo: data frame with dates, air temperature and precipitation series.
# z_topo: numeric vector with air temperature and precipitation gauge elevation.
# param_tair: numeric vector with air temperature module parameters.
# param_precip: numeric vector with precipitation module parameters.
# param_ice: numeric vector with the glacier module parameters.
# init_ice: numeric value with initial snow water equivalent. Default value being 00 mm.
## output
# data frame with two columns: the date and the daily mass balance.
<- function(topography,
glacier_hbv
meteo,
z_topo,
param_tair,
param_precip,
param_ice,init_ice = 0){
<- nrow(topography) # to get the number of elevation bands
n_it <- nrow(meteo) # to get number of rows
n_dates
<- tair_model <- matrix(NA_real_, nrow = n_dates, ncol = n_it)
precip_model <- list()
glacier_model
for(i in 1:n_it){
# we first distribute the meteo forcing among the elevation bands
<- Precip_model(model = 1,
precip_model[ , i] inputData = meteo[ , "P(mm/d)"],
zmeteo = z_topo[2],
ztopo = topography[i , "mean"],
param = param_precip)
<- Temp_model(model = 1,
tair_model[ , i] inputData = meteo[ , "Tair(ºC)"],
zmeteo = z_topo[1],
ztopo = topography[i , "mean"],
param = param_tair)
# now we use the extrapolated values in the glacier module
<-
glacier_model[[ i ]] SnowGlacier_HBV(model = 1,
inputData = cbind( tair_model[ , i], precip_model[ , i]),
initCond = c(init_ice, 1, topography[i, "area_rel"]),
param = param_ice )
}
# we aggregate the mass balance series for the whole glacier
<- lapply(X = 1:n_it, FUN = function(x){
cum_mb <- glacier_model[[x]][ , 7] * topography[x, "area_rel"]
out
})<- Reduce(f = `+`, x = cum_mb)
cum_mb
# return the column Cum = Psnow - Mtot (aggregated at glacier scale)
<- data.frame(date = meteo[ , "Date"],
cum_out "cum_mb(mm)" = cum_mb,
check.names = FALSE)
return(cum_out)
}
When the measures and simulations are at different time-scale (annual vs daily) is always useful to construct an aggregation function (apart from the model).
# this function will use the glacier_hbv output data frame
# in order to get the annual mass balance
## arguments
# x: data frame resulting from glacier_hbv model
# start_date: string vector with starting dates.
# end_date: string vector with ending dates.
## output
# data frame with the annual mass balances
<- function(x, start_date, end_date){
agg_mb <- length(start_date)
n_it
<- c()
annual_mb for(i in 1:n_it){
<- which(x[ , 1] == start_date[i])
flag_start <- which(x[ , 1] == end_date[i])
flag_end
<- sum( x[flag_start:flag_end, 2] )
annual_mb[i]
}
# build output data frame
<- data.frame(start = start_date,
out end = end_date,
"mb(mm we)" = annual_mb,
check.names = FALSE)
return(out)
}
# in this chunk of code I will also build the GOF function (you can also take a look
# at the hydroGOF package)
## arguments
# obs_upp: numeric vector with the acceptable upper limit
# obs_lwr: numeric vector with the acceptable lower limit
# sim: numeric vector with simulated mass balance
## output
# numeric value with the number of times that the simulation fits in between
# the lower and upper limits.
<- function(obs_upp, obs_lwr, sim){
my_gof <- length(sim)
n_it <- 0
out
for(i in 1:n_it){
if(sim[i] >= obs_lwr[i] & sim[i] <= obs_upp[i]){
<- 1 + out
out
else {
} <- 0 + out
out
}
}
return(out)
}
As in the previous chapters (3 and 4), we are going to sample the parameter space in order to get the acceptable parameter sets.
# air temperature model
<- rbind(
tair_range t_grad = c(-9.8, -2)
)
# precip model
<- rbind(
precip_range p_grad = c(5, 25)
)
# glacier module
<- rbind(
glacier_range sfcf = c(1, 2),
tr = c(0, 3),
tt = c(0, 3),
fm = c(1, 4),
fi = c(4, 8)
)
## we aggregate them in a matrix
<-
param_range rbind(
tair_range,
precip_range,
glacier_range )
In the next step we generate the random parameter sets,
# set the number of model runs that you want to try
<- 10000
n_run
# build the matrix
<- nrow(param_range)
n_it
<- matrix(NA_real_, nrow = n_run, ncol = n_it)
param_sets
colnames(param_sets) <- rownames(param_range)
set.seed(123) # just for reproducibility
for(i in 1:n_it){
<- runif(n = n_run,
param_sets[ , i] min = param_range[i, 1],
max = param_range[i, 2]
)
}
head(param_sets)
#> t_grad p_grad sfcf tr tt fm fi
#> [1,] -7.556895 11.211834 1.991123 0.2636769 0.6044820 1.639739 5.692968
#> [2,] -3.651220 11.490401 1.302231 2.3388344 2.9345710 2.331002 7.141930
#> [3,] -6.609980 22.405084 1.433759 0.8435020 1.2381374 1.384493 6.407414
#> [4,] -2.912464 11.573476 1.160521 1.6490971 1.4259374 2.434075 4.327736
#> [5,] -2.464355 7.514025 1.823027 0.5838206 0.0531312 3.157230 5.180723
#> [6,] -9.444659 12.124429 1.208091 1.0183195 1.1042341 3.717423 5.354845
Now we combine our functions and extract our best simulations,
# goodness of fit vector
<- c()
gof
# make a loop
for(i in 1:n_run){
# run the model
<- glacier_hbv(topography = gl_topo,
glacier_sim meteo = meteo_data,
z_topo = c(z_tair, z_precip),
param_tair = param_sets[i, rownames(tair_range)],
param_precip = param_sets[i, rownames(precip_range) ],
param_ice = param_sets[i, rownames(glacier_range)] )
# aggregate the simulation
<- agg_mb(x = glacier_sim,
annual_mb start_date = as.Date( mb_dates$winter[-4] ),
end_date = as.Date( mb_dates$winter[-1] ) - 1 )
# compare the simulations with measurements
<- my_gof(obs_upp = mass_balance$upp,
gof[i] obs_lwr = mass_balance$lwr,
sim = annual_mb[ , 3])
rm(glacier_sim, annual_mb)
}
<- cbind(param_sets, gof)
param_sets
# we apply a filter
<- subset(x = param_sets, subset = gof == 3) param_subset
Once we have the subsetted our parameter matrix, we run the simulations to obtain a mean value (one per year).
# now we run the model again to get our simulations
<- nrow(param_subset)
n_it
<- matrix(NA_real_, nrow = 3, ncol = n_it)
mb_sim
for(i in 1:n_it){
<- glacier_hbv(topography = gl_topo,
glacier_sim meteo = meteo_data,
z_topo = c(z_tair, z_precip),
param_tair = param_subset[i, rownames(tair_range)],
param_precip = param_subset[i, rownames(precip_range) ],
param_ice = param_subset[i, rownames(glacier_range)] )
<- agg_mb(x = glacier_sim,
annual_mb start_date = as.Date( mb_dates$winter[-4] ),
end_date = as.Date( mb_dates$winter[-1] ) - 1 )
<- annual_mb[ , 3]
mb_sim[ , i]
rm(i, glacier_sim, annual_mb)
}
# now we are going to make a data frame with the mean surface mass balance simulation
<- cbind( mass_balance,
mean_sim "mb_sim" = rowMeans(mb_sim) )
# make the plot
library(ggplot2)
<-
g1 ggplot(data = mean_sim, aes(x = year)) +
geom_pointrange(aes(y = `mb(mm we)`, ymin = `lwr`, color = 'obs',
ymax = `upp` ), size = 1, fill = "white", shape = 21) +
geom_point(aes(y = `mb_sim`, fill = 'sim'), shape = 23,
size = 3) +
geom_hline(yintercept = 0) +
scale_y_continuous(limits = c(-1500, 500), breaks = seq(-1500, 500, 250) ) +
scale_color_manual(name = '', values = c('obs' = 'blue') ) +
scale_fill_manual(name = '', values = c('sim' = 'red') ) +
ggtitle('') +
xlab('') + ylab('mb (mm we)') +
theme_minimal() +
theme(
title = element_text(color = "black", size = 12, face = "bold"),
axis.title.x = element_text(color = "black", size = 12, face = "bold"),
axis.title.y = element_text(color = "black", size = 12, face = "bold"),
legend.text = element_text(size = 11),
axis.text = element_text(size = 11))
g1
Is your turn
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.