The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Rosenzweig-MacArthur predator-prey model (Pineda-Krch et al., 2007)

Rosenzweig-MacArthur predator-prey model (Pineda-Krch et al., 2007, Pineda-Krch, 2008)

dN/dt = r(1-N/K - alpha/(1+wN))NP
dP/dt = c*alpha/(1+wN))NP

This model has five reactions with the following per capita rates,

prey birth:     b
prey death:     d+(b-d)N/K
predation:      alpha/(1+wN)
predator birth: c*alpha/(1+wN)N
predator death: g

Propensity functions:

a1 = b * N
a2 = (d+(b-d)N/K) * N
a3 = alpha/(1+wN) * N * P
a4 = c*alpha/(1+wN) * N * P
a5 = g * P

Load package

library(GillespieSSA)

Define parameters

parms <- c(b=2, d=1, K=1000, alpha=0.005, 
           w=0.0025, c=2, g=2)
tf <- 10                                               # Final time
simName <- "Rosenzweig-MacArthur predator-prey model"  # Name

Define initial state vector

x0  <- c(N=500, P=500)

Define state-change matrix

nu  <- matrix(c(+1, -1, -1,  0,  0,
                 0,  0,  0, +1, -1),     
                 nrow=2,byrow=TRUE) 

Define propensity functions

a <- c(
  "b*N",
  "(d+(b-d)*N/K)*N",
  "alpha/(1+w*N)*N*P",
  "c*alpha/(1+w*N)*N*P",
  "g*P"
) 

Run simulations with the Direct method

set.seed(1)
out <- ssa(
  x0 = x0,
  a = a,
  nu = nu,
  parms = parms,
  tf = tf,
  method = ssa.d(),
  simName = simName,
  verbose = FALSE,
  consoleInterval = 1
) 
ssa.plot(out, show.title = TRUE, show.legend = FALSE)

Run simulations with the Explict tau-leap method

set.seed(1)
out <- ssa(
  x0 = x0,
  a = a,
  nu = nu,
  parms = parms,
  tf = tf,
  method = ssa.etl(tau = .01),
  simName = simName,
  verbose = FALSE,
  consoleInterval = 1
) 
ssa.plot(out, show.title = TRUE, show.legend = FALSE)

Run simulations with the Binomial tau-leap method

set.seed(1)
out <- ssa(
  x0 = x0,
  a = a,
  nu = nu,
  parms = parms,
  tf = tf,
  method = ssa.btl(),
  simName = simName,
  verbose = FALSE,
  consoleInterval = 1
) 
ssa.plot(out, show.title = TRUE, show.legend = FALSE)

Run simulations with the Optimized tau-leap method

set.seed(1)
out <- ssa(
  x0 = x0,
  a = a,
  nu = nu,
  parms = parms,
  tf = tf,
  method = ssa.otl(),
  simName = simName,
  verbose = FALSE,
  consoleInterval = 1
) 
ssa.plot(out, show.title = TRUE, show.legend = FALSE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.